Pengenalan Iris Dengan Normalisasi Menggunakan LBP dan RBF

Muhammad Ezar Al Rivan, Siska Devella, Jordi Saputra

Abstract


Biometrik merupakan sistem yang menggunakan bagian tubuh manusia untuk dijadikan identitas pribadi seseorang. Iris merupakan salah satu bagian tubuh yang dapat digunakan dalam biometri. Setiap iris memiliki tekstur yang sangat detail dan unik bahkan berbeda antara mata kanan dan kiri. Iris mata juga tidak berubah dan stabil dalam waktu yang lama sehingga dapat digunakan dalam sistem identifikasi. Pada penelitian ini proses yang dilakukan untuk melakukan identifikasi iris mata adalah akuisisi data, preprocessing, ekstraksi ciri dan klasifikasi. Prepocessing yang dilakukan berupa normalisasi iris dengan mengubah bentuk iris. Local Binary Pattern digunakan sebagai ektraksi ciri tekstur iris mata sedangkan untuk mengklasifikasikan ciri dari tekstur iris mata digunakan Jaringan Syaraf Tiruan Radial Basis Function (RBF). Dari hasil pengujian diperoleh hasil akurasi tertinggi sebesar 80% dengan menggunakan spread 225 untuk data training berupa 8 citra iris kiri dan data testing berupa 2 citra iris kiri.

Full Text:

PDF

References


Maimunah and A. Harjoko, “Sistem pengenalan iris mata manusia dengan menggunakan transformasi wavelet,” Semin. Nas. Apl. Teknol. Inf. 2007, vol. 2007, no. Snati, 2007.

H. Sunil.S and P. I Veena, “Comparative Survey of Various Iris Recognition,” Int. Conf. Electr. Electron. Commun. Comput. Optim. Tech., vol. 1, no. 1, pp. 46–58, 2013.

K. S. Bhagat, R. R. Deshmukh, P. B. Patil, D. K. Kirange, and S. Waghmare, “Iris recognition using radon transform and GLCM,” 2017 Int. Conf. Adv. Comput. Commun. Informatics, ICACCI 2017, vol. 2017-Janua, pp. 2257–2263, 2017, doi: 10.1109/ICACCI.2017.8126182.

D. E. Puspitawati, Adiwijawa, and A. Rakhmatsyah, “Pengenalan iris mata dengan menggunakan metode wavelet dan jaringan syaraf tiruan radial basis function,” Fak. Tek. Inform. Progr. Stud. S1 Tek. Inform., 2008.

Rashad, Shams, Nomir, and El Awady, “IRIS Recognition Based On LBP and Combined LVQ Classifier,” Int. J. Comput. Sci. Inf. Technol., vol. 3, no. 5, pp. 67–78, 2011, doi: 10.5121/ijcsit.2011.3506.

A. Nigam, V. Krishna, A. Bendale, and P. Gupta, “Iris recognition using block local binary patterns and relational measures,” IJCB 2014 - 2014 IEEE/IAPR Int. Jt. Conf. Biometrics, 2014, doi: 10.1109/BTAS.2014.6996263.

Y. He, G. Feng, Y. Hou, L. Li, and E. Micheli-Tzanakou, “Iris feature extraction method based on LBP and chunked encoding,” Proc. - 2011 7th Int. Conf. Nat. Comput. ICNC 2011, vol. 3, pp. 1663–1667, 2011, doi: 10.1109/ICNC.2011.6022302.

K. K. Kumar and M. Pavani, “LBP based biometrie identification using the periocular region,” 2017 8th IEEE Annu. Inf. Technol. Electron. Mob. Commun. Conf. IEMCON 2017, pp. 204–209, 2017, doi: 10.1109/IEMCON.2017.8117193.

K. Popplewell, K. Roy, F. Ahmad, and J. Shelton, “Multispectral iris recognition utilizing hough transform and modified LBP,” Conf. Proc. - IEEE Int. Conf. Syst. Man Cybern., vol. 2014-Janua, no. January, pp. 1396–1399, 2014, doi: 10.1109/SMC.2014.6974110.

K. Mrunal M. and L. S. A., “Robust human Iris Pattern Recognition System Using Neural Network Approach,” 2013.

M. M. Khedkar and S. A. Ladhake, “Neural network based iris pattern recognition system using discrete Walsh Hadamard transform features,” Proc. 2013 Int. Conf. Adv. Comput. Commun. Informatics, ICACCI 2013, pp. 388–393, 2013, doi: 10.1109/ICACCI.2013.6637203.

D. Heksaputra, D. P. Wijaya, and S. Nilawati, “Perbaikan Kualitas Citra Iris Mata Untuk Pengenalan Pola (Biometric),” Khazanah, vol. 7, no. 2, pp. 11–23, 2015, doi: 10.20885/khazanah.vol7.iss2.art2.

M. E. Al Rivan and S. Devella, “PENGENALAN IRIS MENGGUNAKAN FITUR LOCAL BINARY PATTERN DAN RBF CLASSIFIER,” vol. 11, no. 1, pp. 97–106, 2020.

J. Daugman, “How iris recognition works?,” IEEE Trans Circuits Syst Video Technol, vol. 14, no. 1, pp. 21–30, 2004.

S. Devella, “Pengenalan Iris Menggunakan K – Nearest Neighbors dengan Ekstraksi Fitur Dicrete Cosine Transform,” vol. 02, no. 01, pp. 27–33, 2019.

A. S. Leonard Flom, “Iris Recognition System (U.S Patent),” United States Pat. [ 19 ] I, 1987.

J. G. Daugman, “BIOMETRIC PERSONAL IDENTIFICATION SYSTEM BASED ON IRIS ANALYSIS,” 1994.

L. Masek, “Recognition of human iris patterns for biometric identification,” J. Eng. Appl. Sci., vol. 54, no. 6, pp. 635–651, 2007.




DOI: http://dx.doi.org/10.24014/coreit.v6i2.9685

Refbacks

  • There are currently no refbacks.




Creative Commons License  site stats  
Jurnal CoreIT by http://ejournal.uin-suska.ac.id/index.php/coreit/ is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.