Data Mining for Analyzing Consumer Segmentation: Identifying Consumer Preference Patterns Using the Fuzzy C-Means Clustering on Halal Products
Abstract
Halal products are increasingly popular worldwide, not only in Muslim-majority countries but also in non-Muslim nations. The global halal market exceeds USD 650 million annually, emphasizing the importance of halal certification, particularly in Indonesia as the world’s largest Muslim-majority country. This research aims to cluster consumers of halal meat products by analyzing factors influencing consumer behavior in purchasing certified halal beef and chicken. The study employs the Fuzzy C-Means (FCM) clustering algorithm on 176 respondents’ questionnaire data consisting of 36 parameters. The experiment was performed using Google Colab with a maximum of 1000 iterations, error tolerance of 0.0001, and fuzziness coefficient m = 2.4. Results show that two optimal clusters were formed, with a Partition Coefficient Index (PCI) value of 0.9993, indicating excellent clustering quality. The first cluster consists primarily of young consumers aged 15–24 with lower spending, while the second cluster includes adults aged 35–54 with higher income. Both groups prioritize halal certification and logo visibility when choosing meat products. The findings provide insights for halal product retailers and policymakers to enhance halal product distribution, certification support, and marketing strategies in Indonesia.
Keywords
Full Text:
PDFReferences
The Royal Islamic Strategic Studies Centre, "The Muslim 500: The World's 500 Most Influential Muslims," RISSC, 2024.
BPJPH, "Tentang BPJPH," Kemenag RI, Jakarta, 2023.
B. P. Statistik, "Produksi Daging Ayam Ras Pedaging menurut Provinsi (Ton), 2020-2022," BPS, 2023. [Online]. Available: https://www.bps.go.id/indicator/24/488/1/produksi-daging-ayam-ras-pedaging-menurut-provinsi.html. [Accessed 18 11 2023]..
ARPI, "Cold Chain Data," 2022.
S. K. D. S. Ghosh, "Comparative Analysis of K-Means and Fuzzy C- Means Algorithms," International Journal of Advanced Computer Science and Applications, vol. 4, no. 4, 2013.
H. H. A. ,. A. J. H. R. Mohammed, "Improved Fuzzy C-Mean Algorithm for Image Segmentation," (IJARAI) International Journal of Advanced Research in Artificial Intelligence, vol. 5, no. 6, 2016.
Y. G. X. G. J. X. N. L. Hua, ""A Novel Brain MRI Image Segmentation Method Using an Improved Multi-View Fuzzy c-Means Clustering Algorithm," " Frontiers in Neuroscience, vol. 15, 2021.
M. N. H. R. G. Deviyana Nurmin, "Penerapan Metode Fuzzy C-Means Pada Pengelompokan Kabupaten/Kota di Pulau Kalimantan Berdasarkan Indikator Kesejahteraan Rakyat Tahun 2020," Jurnal EKSPONENSIAL, vol. 13, no. 2, pp. 190-196, 2022. .
S. K. D. S. Ghosh, "Comparative Analysis of K-Means and Fuzzy C-Means Algorithms," IJACSA, vol. 4, no. 4, 2013.
R. K. A. ,. P. K. D. Kumar, ""Bias-Corrected Intuitionistic Fuzzy C-Means With Spatial Neighborhood Information Approach for Human Brain MRI Image Segmentation,," IEEE Transactions on Fuzzy Systems, vol. 30, no. 3, pp. 687-700, 2022.
H. Z. T. L. A. B. X. Y. T. W. D. Li, "Hybrid Missing Value Imputation Algorithms Using Fuzzy C-Means and Vaguely Quantified Rough Set,," IEEE Transactions on Fuzzy Systems, vol. 30, no. 5, pp. 1396 - 1408, 2022.
J. Y. a. W. L. T. Yu, "Dynamic Background Subtraction Using Histograms Based on Fuzzy C-Means Clustering and Fuzzy Nearness Degree,," IEEE Access, vol. 7, pp. 14671 - 14679, 2019.
S.-K. O. W. P. Z. W. ,. Z. F. S.-B. Roh, "Design of Iterative Fuzzy Radial Basis Function Neural Networks Based on Iterative Weighted Fuzzy C-Means Clustering and Weighted LSE Estimation,," IEEE Transactions on Fuzzy Systems,, vol. 30, no. 10, 2022.
X. G. C. Wu, "A Novel Single Fuzzifier Interval Type-2 Fuzzy C-Means Clustering With Local Information for Land-Cover Segmentation," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vols. 14,, pp. 5903-5917, 2021.
S. J. R, "Peningkatan Performa Cluster Fuzzy C-Means PADA Pengklasteran Sentimen Menggunakan Particleswam Optimazion," Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), vol. 6, no. 4, pp. 349-354, Juni 2019..
L. F. E. Rouza, ""Implementasi Fuzzy C-Means Clustering dalam Pengelompokan UKM Di Kabupaten Rokan Hulu,," Techno.COM, vol. 19, no. 4, pp. 481-495, 2020.
M. N. Sutoyo and A. T. Sumpala, "Penerapan Fuzzy C-Means untuk Deteksi Dini Kemampuan Penalaran Matematis," Scientific Journal of Informatics, vol. 2, no. 2, 2015.
A. T. S. M. N. Sutoyo, "Penerapan Fuzzy C-Means untuk Deteksi Dini Kemampuan Penalaran Matematis," Scientific Journal of Informatics, vol. 2, no. 2, 2015.
DOI: http://dx.doi.org/10.24014/coreit.v11i2.38608
Refbacks
- There are currently no refbacks.
| | |
| Jurnal CoreIT by http://ejournal.uin-suska.ac.id/index.php/coreit/ is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. | ||
