Benchmarking Various Machine Learning Models to Detect Lung Cancer

Iis Afrianty, Liza Afriyanti

Abstract


This study benchmarked and evaluated the performance of various machine learning techniques to detect lung cancer using public datasets. The techniques used include Random Forest, Support Vector Machine, Logistic Regression, Multi-Layer Perceptron, C4.5, Bayesian Network, Reptree, Naive Bayes, and P.A.R.T. Evaluation was carried out using metrics such as Accuracy, F-measure, Precision, TPR, ROC, FPR, PRC, and MCC. The results showed that the Support Vector Machine algorithm performed best on balanced dataset distribution, while Random Forest showed stable performance on unbalanced datasets. This study confirms the importance of selecting appropriate algorithms and data distribution to improve lung cancer detection.

Keywords


Benchmarking; Lung Cancer; Machine Learning

Full Text:

PDF

References


Nurhidayah, B. Abdul Samad, and B. Abdullah, “Perbandingan Metode Contrast Enhancement pada Citra CT-Scan Kanker Paru-paru,” Gravitasi, vol. 19, no. 2, pp. 24–28, Dec. 2020, doi: 10.22487/gravitasi.v19i2.15360.

R. T. Prasetio and S. Susanti, “Prediksi Harapan Hidup Pasien Kanker Paru Pasca Operasi Bedah Toraks Menggunakan Boosted k-Nearest Neighbor”.

J. Joseph and L. W. A. Rotty, “Kanker Paru: Laporan Kasus,” Med. Scope J., vol. 2, no. 1, Jul. 2020, doi: 10.35790/msj.2.1.2020.31108.

M. S. Kumar and K. V. Rao, “Prediction of Lung Cancer Using Machine Learning Technique: A Survey,” in 2021 International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, India: IEEE, Jan. 2021, pp. 1–5. doi: 10.1109/ICCCI50826.2021.9402320.

Y. Yang, L. Xu, L. Sun, P. Zhang, and S. S. Farid, “Machine learning application in personalised lung cancer recurrence and survivability prediction,” Comput. Struct. Biotechnol. J., vol. 20, pp. 1811–1820, 2022, doi: 10.1016/j.csbj.2022.03.035.

J. A. Bartholomai and H. B. Frieboes, “Lung Cancer Survival Prediction via Machine Learning Regression, Classification, and Statistical Techniques,” in 2018 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Louisville, KY, USA: IEEE, Dec. 2018, pp. 632–637. doi: 10.1109/ISSPIT.2018.8642753.

H. Tang, J. Zhao, and X. Yang, “Explore Machine Learning for Analysis and Prediction of Lung Cancer Related Risk Factors,” in Proceedings of the 2018 2nd International Conference on Computer Science and Artificial Intelligence, Shenzhen China: ACM, Dec. 2018, pp. 41–45. doi: 10.1145/3297156.3297274.

B. Alsinglawi et al., “An explainable machine learning framework for lung cancer hospital length of stay prediction,” Sci. Rep., vol. 12, no. 1, p. 607, Jan. 2022, doi: 10.1038/s41598-021-04608-7.

M. I. Faisal, S. Bashir, Z. S. Khan, and F. Hassan Khan, “An Evaluation of Machine Learning Classifiers and Ensembles for Early Stage Prediction of Lung Cancer,” in 2018 3rd International Conference on Emerging Trends in Engineering, Sciences and Technology (ICEEST), Karachi, Pakistan: IEEE, Dec. 2018, pp. 1–4. doi: 10.1109/ICEEST.2018.8643311.

S. M. Kulkarni and G. Sundari, “COMPARATIVE ANALYSIS OF PERFORMANCE OF DEEP CNN BASED FRAMEWORK FOR BRAIN MRI CLASSIFICATION USING TRANSFER LEARNING,” vol. 16, 2021.

P. J. Mahadevia, L. A. Fleisher, K. D. Frick, J. Eng, S. N. Goodman, and N. R. Powe, “Lung Cancer Screening With Helical Computed Tomography in Older Adult Smokers: A Decision and Cost-effectiveness Analysis,” JAMA, vol. 289, no. 3, p. 313, Jan. 2003, doi: 10.1001/jama.289.3.313.

M. R. Raharjo and A. P. Windarto, “Penerapan Machine Learning dengan Konsep Data Mining Rough Set (Prediksi Tingkat Pemahaman Mahasiswa terhadap Matakuliah),” J. MEDIA Inform. BUDIDARMA, vol. 5, no. 1, p. 317, Jan. 2021, doi: 10.30865/mib.v5i1.2745.

J. V. Kistowski, J. A. Arnold, K. Huppler, K.-D. Lange, J. L. Henning, and P. Cao, “How to Build a Benchmark,” in Proceedings of the 6th ACM/SPEC International Conference on Performance Engineering, Austin Texas USA: ACM, Jan. 2015, pp. 333–336. doi: 10.1145/2668930.2688819.

J. Thiyagalingam, M. Shankar, G. Fox, and T. Hey, “Scientific machine learning benchmarks,” Nat. Rev. Phys., vol. 4, no. 6, pp. 413–420, Apr. 2022, doi: 10.1038/s42254-022-00441-7.

D. N. Haddad, K. L. Sandler, L. M. Henderson, M. P. Rivera, and M. C. Aldrich, “Disparities in Lung Cancer Screening: A Review,” Ann. Am. Thorac. Soc., vol. 17, no. 4, pp. 399–405, Apr. 2020, doi: 10.1513/AnnalsATS.201907-556CME.




DOI: http://dx.doi.org/10.24014/coreit.v11i2.38590

Refbacks

  • There are currently no refbacks.




Creative Commons License  site stats  
Jurnal CoreIT by http://ejournal.uin-suska.ac.id/index.php/coreit/ is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.