A Support Vector Regression Approach for Predicting the Remaining Useful Life of Turbofan Engines
Abstract
Turbofan engines are crucial components in the aviation and manufacturing industries, where estimating the Remaining Useful Life (RUL) has a significant impact on operational efficiency and safety. This study aims to predict the RUL of turbofan engines using the Support Vector Regression (SVR) method, a machine learning approach that has proven effective in modeling nonlinear relationships between variables. Operational data related to turbofan engines include operational parameters, sensors, and maintenance records. The initial stage of this research involves data analysis based on unit number, time, operational control, and sensor parameters. This process begins with preprocessing to initialize the initial data values, normalize, and select sensors that have stagnant values, as these sensors do not affect the machine learning system. Subsequently, regression calculations are performed to compare predicted values and actual values using the Support Vector Regression method optimized with Grid Search Optimization. In this study, testing was conducted with Parameters C [1, 10, 50, 100] and ε [1, 5, 10, 50], resulting in the best model with an RMSE error of 19.56 and MAE of 14.73.
Keywords
Full Text:
PDFReferences
T. Wang, “Trajectory Similarity Based Prediction for Remaining Useful Life Estimation,” 2010.
U. Thakkar, “Remaining Useful Life Prediction of a Turbofan Engine Using Deep Layer Recurrent Neural Networks,” 2021.
E. Priambodo, T. Prahasto, and A. Widodo, “Deteksi Dini Kerusakan Bearing Menggunakan Machine Learning Pendekatan Support Vector Regression (SVR),” 2023.
O. Asif, S. A. L. I. Haider, S. R. Naqvi, J. F. W. Zaki, K. S. Kwak, and S. M. R. Islam, “A Deep Learning Model for Remaining Useful Life Prediction of Aircraft Turbofan Engine on C-MAPSS Dataset,” IEEE Access, vol. 10, pp. 95425–95440, 2022, doi: 10.1109/ACCESS.2022.3203406.
B. Maschler, Continual Learning of Fault Prediction for Turbofan Engines using Deep Learning with Elastic Weight Consolidation. IEEE, 2020.
H. K. Wang, Y. Cheng, and K. Song, “Remaining useful life estimation of aircraft engines using a joint deep learning model based on tcnn and transformer,” Comput Intell Neurosci, vol. 2021, 2021, doi: 10.1155/2021/5185938.
D. Titian Wiranata, T. Prahasto, and A. Widodo, “Analisis Prognostik Terhadap Kerusakan Bantalan Pada Poros Kecepatan Tinggi Turbin Angin Menggunakan Machine Learning Dengan Pendekatan Support Vector Regression (SVR),” 2021.
A. M. Siregar, S. Faisal, and B. Widiharto, “Model Prediksi Penderita Covid 19 Di Indonesia Menggunakan Metode Support Vector Regresion,” 2022.
Z. Rais, “Analisis Support Vector Regression (SVR) Dengan Kernel Radial Basis Function (RBF) Untuk Memprediksi Laju Inflasi Di Indonesia,” VARIANSI: Journal of Statistics and Its Application on Teaching and Research, vol. 4, no. 1, pp. 30–38, 2022, doi: 10.35580/variansiunm13.
R. P. Furi, M. S. Jondri, and D. Saepudin, “Prediksi Financial Time Series Menggunakan Independent Component Analysis dan Support Vector Regression Studi Kasus : IHSG dan JII,” 2015.
N. Asyraf et al., “Peramalan Curah Hujan Di Kota Medan menggunakan Metode Support Vector Regression,” 2022.
D. K. Frederick, J. A. Decastro, and J. S. Litt, “User’s Guide for the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS),” 2007. [Online]. Available: http://www.sti.nasa.gov
E. Ramasso and A. Saxena, “Review and Analysis of Algorithmic Approaches Developed for Prognostics on CMAPSS Dataset,” 2014.
A. J. Smola, B. Sch¨olkopf, and S. Sch¨olkopf, “A tutorial on support vector regression,” Kluwer Academic Publishers, 2004.
A. Kazem, E. Sharifi, F. K. Hussain, M. Saberi, and O. K. Hussain, “Support vector regression with chaos-based firefly algorithm for stock market price forecasting,” Applied Soft Computing Journal, vol. 13, no. 2, pp. 947–958, 2013, doi: 10.1016/j.asoc.2012.09.024.
V. R. Prasetyo, B. Hartanto, and A. A. Mulyono, “Penentuan Pembimbing Tugas Akhir Mahasiswa Jurusan Teknik Informatika Universitas Surabaya Dengan Metode Dice Coefficient,” Teknika, vol. 8, no. 1, pp. 44–51, 2019, doi: 10.34148/teknika.v8i1.147.
M. Sholeh, D. Andayati, R. Yuliana Rachmawati, P. Studi Informatika, and F. Teknologi Informasi dan Bisnis, “Data Mining Model Klasifikasi Menggunakan Algoritma K-Nearest Neighbor Dengan Normalisasi Untuk Prediksi Penyakit Diabetes Data Mining Model Classification Using Algorithm K-Nearest Neighbor With Normalization For Diabetes Prediction,” 2022.
V. R. Prasetyo, M. Mercifia, A. Averina, L. Sunyoto, and B. Budiarjo, “Prediksi Rating Film Pada Website Imdb Menggunakan Metode Neural Network,” Network Engineering Research Operation, vol. 7, no. 1, p. 1, 2022, doi: 10.21107/nero.v7i1.268.
M. Raehanun, “Analisis Support Vector Machine (Svm) Dalam Prediksi,” Yogyakarta, Jun. 2021.
DOI: http://dx.doi.org/10.24014/coreit.v11i2.38532
Refbacks
- There are currently no refbacks.
| | |
| Jurnal CoreIT by http://ejournal.uin-suska.ac.id/index.php/coreit/ is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. | ||
