Classification of Herbal Leaves using EfficientNetB0

A. Nurul Aisya Alda, Dolly Indra, Fitriyani Umar

Abstract


The identification of herbal leaves remains a challenging task due to the high morphological and visual similarity among commonly used species, which often leads to misclassification when performed manually. This study addresses the challenge of identifying herbal leaves, namely Sauropus androgynusMoringa oleiferaOrthosiphon aristatusSyzygium polyanthum, and Piper betle, which are often difficult to distinguish due to high morphological and visual similarity.The proposed approach utilizes the EfficientNetB0 Convolutional Neural Network architecture and employs a two-stage fine-tuning strategy, combined with data augmentation, to enhance generalization performance. A total of 500 manually collected leaf images were used for training, resized to 224×224 pixels, and augmented through rotation and flipping. Model optimization was performed using the Adam and SGD optimizers. The trained model was evaluated on 235 previously unseen external images to assess robustness. The experimental results demonstrate that the proposed model achieved an overall classification accuracy of 88.94%, with particularly strong performance on leaf classes exhibiting distinctive morphological features, such as Orthosiphon aristatus, which obtained an F1-score of 0.96. However, the model exhibited limitations in distinguishing visually similar classes, especially between Moringa oleifera and Sauropus androgynus, both of which possess compound leaf structures, and performance degradation was observed under varying illumination conditions and complex backgrounds. The novelty of this study lies in the application of an EfficientNetB0-based fine-tuning strategy for multi-class herbal leaf classification using a limited, manually collected dataset, demonstrating its potential for deployment in mobile or other resource-constrained environments to support fast and reliable herbal plant identification.


Keywords


Adam, Convolutional Neural Network, EfficientNetB0, Fine-Tuning, Herbal Leaves, Image Classification, SGD.

Full Text:

PDF

References


Adrian, R. A. Syahputra, N. A. Juwita, R. Astyka, and M. F. Lubis, “Andaliman (Zanthoxylum acanthopodium DC.) a herbal medicine from North Sumatera, Indonesia: Phytochemical and pharmacological review,” Heliyon, vol. 9, no. 5, p. e16159, May 2023, doi: 10.1016/J.HELIYON.2023.E16159.

M. Rahayu et al., “Ethnobotany and diversity of Citrus spp. (Rutaceae) as a source of ‘Kem-kem’ traditional medicine used among the Karo sub-ethnic in North Sumatra, Indonesia,” Heliyon, vol. 10, no. 9, p. e29721, May 2024, doi: 10.1016/J.HELIYON.2024.E29721.

M. H. Ahmad, M. Hana, T. Ghazi Pratama, and H. Aulida, “Klasifikasi Empat Jenis Daun Herbal Menggunakan Metode Convolutional Neural Network,” Jurnal Ilmu Komputer dan Matemtika, vol. 4, no. 2, pp. 69–76, 2023.

R. Bashyal and D. L. Roberts, “Assessing the identification uncertainty in plant products traded as traditional Asian medicines,” J Nat Conserv, vol. 73, p. 126410, Jun. 2023, doi: 10.1016/J.JNC.2023.126410.

N. L. Marpaung, R. J. H. Butar Butar, and S. Hutabarat, “Implementasi Deep learning untuk Identifikasi Daun Tanaman Obat Menggunakan Metode Transfer learning,” Jurnal Edukasi dan Penelitian Informatika (JEPIN), vol. 9, no. 3, p. 348, 2023, doi: 10.26418/jp.v9i3.63895.

M. Meiriyama, S. Devella, and S. M. Adelfi, “Klasifikasi Daun Herbal Berdasarkan Fitur Bentuk dan Tekstur Menggunakan KNN,” JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 9, no. 3, pp. 2573–2584, 2022, doi: 10.35957/jatisi.v9i3.2974.

D. Irfansyah, M. Mustikasari, and A. Suroso, “Arsitektur Convolutional Neural Network (CNN) Alexnet Untuk Klasifikasi Hama Pada Citra Daun Tanaman Kopi,” Jurnal Informatika: Jurnal Pengembangan IT, vol. 6, no. 2, pp. 87–92, 2021, doi: 10.30591/jpit.v6i2.2802.

R. Pujiati and N. Rochmawati, “Identifikasi Citra Daun Tanaman Herbal Menggunakan Metode Convolutional Neural Network (CNN),” Journal of Informatics and Computer Science (JINACS), vol. 3, no. 03, pp. 351–357, 2022, doi: 10.26740/jinacs.v3n03.p351-357.

N. P. D. A. S. Dewi, M. W. A. Kesiman, I. M. G. Sunarya, G. A. A. D. Indradewi, and I. G. Andika, “Klasifikasi Jenis Daun Tumbuhan Herbal Berdasarkan Lontar Usada Taru Pramana Menggunakan CNN,” Techno.Com, vol. 23, no. 1, pp. 271–283, 2024, doi: 10.62411/tc.v23i1.9510.

X. Zhao, L. Wang, Y. Zhang, X. Han, M. Deveci, and M. Parmar, “A review of convolutional neural networks in computer vision,” Artif Intell Rev, vol. 57, no. 4, Apr. 2024, doi: 10.1007/s10462-024-10721-6.

R. Kusumastuti, T. Dwi Putra, and Z. Zulfahmi Yudam, “Klasifikasi Citra Penyakit Daun Jagung Menggunakan Algoritma Cnn Effcientnet,” Multitek Indonesia, vol. 17, no. 2, pp. 143–153, 2024, doi: 10.24269/mtkind.v17i2.10085.

S. Arnandito and T. B. Sasongko, “Comparison of EfficientNetB7 and MobileNetV2 in Herbal Plant Species Classification Using Convolutional Neural Networks,” Journal of Applied Informatics and Computing, vol. 8, no. 1, pp. 176–185, 2024, doi: 10.30871/jaic.v8i1.7927.

W. G. Pamungkas, M. I. P. Wardhana, Z. Sari, and Y. Azhar, “Leaf Image Identification: CNN with EfficientNet-B0 and ResNet-50 Used to Classified Corn Disease,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 7, no. 2, pp. 326–333, 2023, doi: 10.29207/resti.v7i2.4736.

S. A. Sabrina and W. F. Al Maki, “Klasifikasi Penyakit pada Tanaman Kopi Robusta Berdasarkan Citra Daun Menggunakan Convolutional Neural Network,” eProceedings of Engineering, vol. 9, no. 3, pp. 1919–1927, 2022.

A. C. Milano, “Klasifikasi Penyakit Daun Padi Menggunakan Model Deep Learning Efficientnet-B6,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 12, no. 1, 2024, doi: 10.23960/jitet.v12i1.3855.

M. Samir, H. Darwis, F. Umar, and P. Korespondensi, “Fourier Descriptor Pada Klasifikasi Daun Herbal Menggunakan Support Vector Machine Dan Naive Bayes Fourier Descriptor on Classification of Herbal Leaves Using Support Vector Machine and Naive Bayes,” vol. 10, no. 6, pp. 1205–1212, 2023, doi: 10.25126/jtiik.2023107309.

D. Intan Permatasari, “Implementasi Metode Convolutional Neural Network (Cnn) Untuk Klasifikasi Tanaman Herbal Berdasarkan Citra Daun,” Kohesi: Jurnal Sains dan Teknologi, vol. 3, no. 9, pp. 1–10, 2024.

C. Mahaputri and I. D. Wisana, “Introduction Makanan Tradisional Nusantara dengan Menggunakan Metode Convolutional Neural Network (CNN),” (Journal of Information System and Computer), vol. 1, no. 1, pp. 1–8, 2022.

H. T. Gorji et al., “Gambar Arsitektur EfficientNetB0,” Scientific Reports. [Online]. Available: https://r.search.yahoo.com/_ylt=Awr98kelUK9nKqMYM92jzbkF;_ylu=c2VjA2ZwLWF0dHJpYgRzbGsDcnVybA--/RV=2/RE=1739571493/RO=11/RU=https%3A%2F%2Fwww.researchgate.net%2Ffigure%2FA-A-concise-representation-of-the-EfficientNet-B0-model-B-The-building-blocks-of_fig4_




DOI: http://dx.doi.org/10.24014/coreit.v11i2.38017

Refbacks

  • There are currently no refbacks.




Creative Commons License  site stats  
Jurnal CoreIT by http://ejournal.uin-suska.ac.id/index.php/coreit/ is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.