Red Curly Chili Forecast in Southeast Sulawesi Using Auto Regressive Integrated Moving Average (ARIMA)
Abstract
Abstract. Price is a crucial aspect in the world of trade. Red curly chili peppers have become one of the plants favored by many consumers. This research aims to develop a forecasting model that can provide a more accurate insight into the future prices of red chili peppers, particularly in Southeast Sulawesi. Because price forecasting plays a crucial role in predicting future price trends, the Auto Regressive Integrated Moving Average (ARIMA) method becomes one of the models that can be used for time series analysis. The data for this research is sourced from the National Food Body Price Panel Website. The data period starts from August 8, 2022, to December 15, 2023, with the last 500 days' prices used as both test and training data. In this study, the ARIMA (1,1,1) model emerged as the best among the three ARIMA models analyzed. The ARIMA (1,1,1) model yielded a MAPE percentage of 17.97%, indicating that this model is suitable or reliable for time series forecasting. Furthermore, the results of this experiment show that the forecasted prices for the next 10 days do not experience significant decreases or increases, referring to several recent data points used as training data samples.
Keywords
References
REFERENCES
Y. T. Santosa, “10 Negara Produsen Cabai Terbesar Di Dunia,” The Agriculture News. [Online]. Available: https://theagrinews.com. [Accessed January 4, 2024].
D. Erianto, “Komoditas Cabai: Sejarah, Manfaat, Produksi, Distribusi dan Perkembangan Harga,” Kompas, April 22, 2022. [Online]. Available: https://www.kompas.id. [Accessed January 4, 2024].
I G. B. T. Ananta and D. G. A. Anjasmara, “Poteksi Ekstrak Buah Cabai Merah Keriting (Capsicum annum var. Longum) Sebagai Antioksidan dan Antibakteri,” Jurnal Ilmiah Medicamento, vol. 8, pp. 48-55, 2022.
H. Khatimah, W. G. Abdullah, and Abdi, “Analisis Peramalan Produksi dan Harga Cabai Merah (Capsicum annum L.) di Provinsi Sulawesi Tenggara,” Journal of Food System and Agribusinnes (JoFSA), vol. 7, pp. 113-122, 2023.
A. Fatihah, “Peramalan Produksi Cabai Merah Keriting Menggunakan Metode Causal Forecasting (Studi Kasus pada Pasar Lelang Cabai Sleman),” B.S thesis, Dept. of Industrial Engineering, Islamic University of Indonesia, Yogyakarta, 2022.
N. Hidayati, S. Anwar, and R. Rahmah, “Peramalan Harga Cabai Merah Sebagai Upaya Menjaga Stabilitas Inflasi Kota Banda Aceh,” Agriekonomika, vol.11, pp. 31-42, 2022.
W. Habibi, “Analisis Kointegrasi Harga Cabai Merah Keriting (Capsicum annuum L.) di Kota Pekanbaru,” B.S thesis, Dept. of Agribusiness, Islamic University of Riau, Pekanbaru, 2019.
Waskito H., A. Nuraini, and N. Rostini, “Respon Pertumbuhan dan Hasil Cabai Keriting (Capsicum annuum L.) Ck5 Akibat Perlakuan Pupuk NPK dan Pupuk Hayati,” Jurnal Kultivasi, vol. 17, pp. 676-681, 2018.
A. C. Fauzan and S. D. Purwanto, “Analisis Perbandingan Algoritma Naïve Bayes Classifier dan Learning Vector Quantization dalam Sistem Identifikasi Boraks pada Bakso Daging Sapi,” Jurnal CoreIT, vol. 7, pp. 43-50, 2021.
A. M. Sari, “Pengertian Data, Fungsi, Jenis-jenis, dan Manfaatnya,” Fakultas Ilmu Komputer dan Teknologi Informasi, August 2, 2023. [Online]. Available: https://fikti.ac.id. [Accessed January 7, 2024].
R. Santra, “Tests for Stationarity in Time Series – Dickey Fuller Test & Augmented Dickey Fuller (ADF) Test,” Medium, May 12, 2023. [Online]. Available: https://medium.com. [Accessed January 5, 2024].
C. Shetty, “Time Series Models,” Medium, September 22, 2020. [Online]. Available: https://medium.com. [Accessed January 5, 2024].
D. Anggreani, Herman, and W. Astuti, “Kinerja Metode Naïve Bayes dalam Prediksi Lama Studi Mahasiswa Fakultas Ilmu Komputer,” Prosiding Seminar Nasional Ilmu Komputer dan Teknologi Informasi, vol. 3, pp. 107-111, 2018.
P. H. Zainal, Y. Angraini, and A. Rizki, “Penerapan Metode Generalized Auto-Regressive Conditional Heteroskedasticity untuk Peramalan Harga Minyak Mentah Dunia,” Journal of Statistics, vol. 12, pp. 12-21, 2023.
M. A. Maricar, “Analisa Perbandingan Nilai Akurasi Moving Average dan Exponential Smoothing untuk Sistem Peramalan Pendapatan pada Perusahaan XYZ,” Jurnal Sistem dan Informatika, vol. 13, pp. 36-45, 2019.
DOI: http://dx.doi.org/10.24014/coreit.v11i1.33986
Refbacks
- There are currently no refbacks.
![]() | | ![]() |
Jurnal CoreIT by http://ejournal.uin-suska.ac.id/index.php/coreit/ is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. |