APPLICATION OF K-NEAREST NEIGHBOR REGRESSION METHOD FOR RICE YIELD PREDICTION
Abstract
Rice plants with the Latin name Oryza Sativa are food plants that are widely used as the main food crop in various countries, one of which is Indonesia. Indonesia is ranked 4th as the largest rice consuming country in the world. This requires the availability of rice to be maintained. Unstable rice production can be a problem. One of the districts that has experienced a decline in rice production in recent years is the district of Lima puluh kota located in West Sumatra province. This requires prediction of rice production so that it can be used as a benchmark for the future. This study uses data on rice production in fifty cities from 2013 to 2023. The method used to predict is k-nearest neighbor regression (KNN Regression). The data division uses rasio 90 : 10. In testing the data used is divided into 2, namely normal data and data that has been normalized. The test results produce the smallest mean absolute percentage error (MAPE) value of 6.98% on normal data, the value of k is 6 with data division using k-fold 5. Based on the resulting MAPE value, it can be said that KNN Regression can predict rice production results very accurately.
Keywords
Full Text:
PDFReferences
R. Chaireni, D. Agustanto, R. A. Wahyu, and P. Nainggolan, “Ketahanan Pangan Berkelanjutan,” Jurnal Kependudukan dan Pembangunan Lingkungan, vol. 1, no. 2, pp. 70–79, 2020, [Online]. Available: jkpl.ppj.unp.ac.id/index.php/JKPL/article/view/13
M. N. Fawaiq, A. Jazuli, and M. M. Hakim, “Prediksi Hasil Pertanian Padi Di Kabupaten Kudus Dengan Metode Brown’S Double Exponential Smoothing,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 4, no. 2, p. 78, 2019, doi: 10.29100/jipi.v4i2.1421.
E. Triyanto, H. Sismoro, and A. D. Laksito, “Implementasi Algoritma Regresi Linear Berganda Untuk Memprediksi Produksi Padi Di Kabupaten Bantul,” Rabit : Jurnal Teknologi dan Sistem Informasi Univrab, vol. 4, no. 2, pp. 66–75, 2019, doi: 10.36341/rabit.v4i2.666.
Mergono Adi Ningrat, Carolina Diana Mual, and Yohanis Yan Makabori, “Pertumbuhan dan Hasil Tanaman Padi (Oryza sativa L.) pada Berbagai Sistem Tanam di Kampung Desay, Distrik Prafi, Kabupaten Manokwari,” Prosiding Seminar Nasional Pembangunan dan Pendidikan Vokasi Pertanian, vol. 2, no. 1, pp. 325–332, Sep. 2021, doi: 10.47687/snppvp.v2i1.191.
ketahananpangan.probolinggokab.go.id, “LUMBUNG PANGAN MASYARAKAT, DUKUNGAN DAN PERANNYA DALAM PEMBANGUNAN KETAHANAN PANGAN DAERAH ,” ketahananpangan.probolinggokab.go.id. Accessed: Jun. 17, 2024. [Online]. Available: https://ketahananpangan.probolinggokab.go.id/2022/12/06/lumbung-pangan-masyarakat-dukungan-dan-perannya-dalam-pembangunan-ketahanan-pangan-daerah/
bps.co.id, “Luas Panen, Produksi, dan Produktivitas Padi Menurut Kabupaten/Kota Hasil Kerangka Sampel Area (KSA) 2021-2023 ,” bps.co.id. Accessed: Jun. 03, 2024. [Online]. Available: https://sumbar.bps.go.id/subject/53/tanaman-pangan.html#subjekViewTab3
P. Dan, “Produksi Padi Di Indonesia 2022,” Badan Pusat Statistik, pp. 15–20, 2022, [Online]. Available: https://www.bps.go.id/publication/2023/08/03/a78164ccd3ad09bdc88e70a2/luas-panen-dan-produksi-padi-di-indonesia-2022.html
Mukhlisin, M. Imrona, and D. T. Murdiansyah, “Prediksi Harga Beras Premium dengan Metode Algoritma K-Nearest Neighbor,” e-Proceeding of Engineering, vol. 7, no. 1, pp. 2714–2724, 2019.
I. C. R. Drajana, “Prediksi Jumlah Produksi Coconut Oil Menggunakan k-Nearest Neighbor dan Backward Elimination bagian dari pohon digunakan manusia , sehingga tumbuhan ini dianggap,” Tecnoscienza, vol. 13, no. 1, pp. 51–64, 2018.
N. K. Suparman, B. A. Dermawan, and T. N. Padilah, “Prediksi Barang Keluar TB. Wijaya Bangunan Menggunakan Algoritma KNN Regression dengan RStudio,” JISKA (Jurnal Informatika Sunan Kalijaga), vol. 6, no. 2, pp. 90–97, 2021, doi: 10.14421/jiska.2021.6.2.90-97.
F. D. N. Q. Januar, K. T. B. Artani, and N. W. Utami, “Analisis Dan Prediksi Penutupan Harga Saham Pada Pt Adaro Energy Indonesia Tbk Menggunakan Algoritma K-Nearest Neighbor Regression,” Jurnal Riset Akuntansi, vol. 13, no. 2, pp. 199–216, 2023.
ori.hhs.gov, “Responsible conduct in data management.” Accessed: Jun. 21, 2024. [Online]. Available: https://ori-hhs-gov.translate.goog/education/products/n_illinois_u/datamanagement/dstopic.html?_x_tr_sl=en&_x_tr_tl=id&_x_tr_hl=id&_x_tr_pto=tc
R. Rahmadini, Enjel Erika LorencisLubis, Aji Priansyah, Yolanda R.W.N, and Tuti Meutia, “Penerapan Data Mining Untuk Memprediksi Harga Bahan Pangan Di Indonesia Menggunakan Algoritma K-Nearest Neighbor,” Jurnal Mahasiswa Akuntansi Samudra, vol. 4, no. 4, pp. 223–235, 2023, doi: 10.33059/jmas.v4i4.7074.
W. W. Pribadi, A. Yunus, and A. Sartika Wiguna, “PERBANDINGAN METODE K-MEANS EUCLIDEAN DISTANCE DAN MANHATTAN DISTANCE PADA PENENTUAN ZONASI COVID-19 DI KABUPATEN MALANG,” 2022.
I. Nabillah and I. Ranggadara, “Mean Absolute Percentage Error untuk Evaluasi Hasil Prediksi Komoditas Laut,” JOINS (Journal of Information System), vol. 5, no. 2, pp. 250–255, Nov. 2020, doi: 10.33633/joins.v5i2.3900.
DOI: http://dx.doi.org/10.24014/coreit.v11i1.30907
Refbacks
- There are currently no refbacks.
![]() | | ![]() |
Jurnal CoreIT by http://ejournal.uin-suska.ac.id/index.php/coreit/ is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. |