IMPROVING PERFORMANCE OF RANDOM FOREST ALGORITHM USING ABC FEATURE SELECTION FOR SOFTWARE DEFECT PREDICTION

Zaina Fadia Laila Hidayati

Abstract


Defects that may arise in software during the development process can affect the quality of the software. The classification method is used to predict software defects to minimize defects. However, the dataset used in the classification process may contain less relevant or have too many features. This can be overcome by selecting features in the dataset. In this research, the Random Forest algorithm is applied for the classification process, and the Artificial Bee Colony (ABC) algorithm is used as a feature selection method. The research aims to determine the accuracy of Random Forest with ABC feature selection. From the results of research conducted on 3 Relink datasets, without feature selection, an average accuracy of 73% was obtained. After implementing ABC feature selection, the average accuracy increased to 82%.


Keywords


Artificial Bee Colony, Feature Selection, Random Forest, Software Defect Prediction

Full Text:

PDF

References


N. Ichsan, H. Fatah, E. Ermawati, I. Indriyanti, and T. Wahyuni, “Integrasi Distribution Based Balance dan Teknik Ensemble Bagging Naive Bayes Untuk Prediksi Cacat Software,” Media J. Inform., vol. 14, no. 2, p. 79, 2022, doi: 10.35194/mji.v14i2.2623.

E. Irawan and R. S. Wahono, “Penggunaan Random Under Sampling untuk Penanganan Ketidakseimbangan Kelas pada Prediksi Cacat Software Berbasis Neural Network,” J. Softw. Eng., vol. 1, no. 2, pp. 92–100, 2015.

Sugiono, A. Taufik, and R. Faizal Amir, “Penerapan Penerapan Teknik Pso Over Sampling Dan Adaboost J48 Untuk Memprediksi Cacat Software,” J. Responsif Ris. Sains dan Inform., vol. 2, no. 2, pp. 198–203, 2020, doi: 10.51977/jti.v2i2.249.

H. Aljamaan and A. Alazba, “Software defect prediction using tree-based ensembles,” PROMISE 2020 - Proc. 16th ACM Int. Conf. Predict. Model. Data Anal. Softw. Eng. Co-located with ESEC/FSE 2020, pp. 1–10, 2020, doi: 10.1145/3416508.3417114.

R. S. Wahono, “A Systematic Literature Review of Software Defect Prediction: Research Trends, Datasets, Methods and Frameworks,” J. Softw. Eng., vol. 1, no. 1, pp. 1–16, 2015.

I. H. Laradji, M. Alshayeb, and L. Ghouti, “Software defect prediction using ensemble learning on selected features,” Inf. Softw. Technol., vol. 58, pp. 388–402, 2015, doi: 10.1016/j.infsof.2014.07.005.

R. Supriyadi, W. Gata, N. Maulidah, and A. Fauzi, “Penerapan Algoritma Random Forest Untuk Menentukan Kualitas Anggur Merah,” E-Bisnis J. Ilm. Ekon. dan Bisnis, vol. 13, no. 2, pp. 67–75, 2020, doi: 10.51903/e-bisnis.v13i2.247.

A. Kustiyo, H. Firqiani, and E. Giri, “Seleksi Fitur Menggunakan Fast Correlation Based Filter pada Algoritma Voting Feature Intervals 5,” J. Ilm. Ilmu Komput., vol. 6, no. 2, p. 245184, 2008.

A. O. Balogun et al., “Impact of feature selection methods on the predictive performance of software defect prediction models: An extensive empirical study,” Symmetry (Basel)., vol. 12, no. 7, 2020, doi: 10.3390/sym12071147.

X. F. Song, Y. Zhang, Y. N. Guo, X. Y. Sun, and Y. L. Wang, “Variable-Size Cooperative Coevolutionary Particle Swarm Optimization for Feature Selection on High-Dimensional Data,” IEEE Trans. Evol. Comput., vol. 24, no. 5, pp. 882–895, 2020, doi: 10.1109/TEVC.2020.2968743.

R. S. Wahono and N. Suryana, “Combining particle swarm optimization based feature selection and bagging technique for software defect prediction,” Int. J. Softw. Eng. its Appl., vol. 7, no. 5, pp. 153–166, 2013, doi: 10.14257/ijseia.2013.7.5.16.

U. M. Khaire and R. Dhanalakshmi, “Stability of feature selection algorithm: A review,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 4, pp. 1060–1073, 2022, doi: 10.1016/j.jksuci.2019.06.012.

D. Karaboga, B. Gorkemli, C. Ozturk, and N. Karaboga, “A comprehensive survey: Artificial bee colony (ABC) algorithm and applications,” Artif. Intell. Rev., vol. 42, no. 1, pp. 21–57, 2014, doi: 10.1007/s10462-012-9328-0.

I. Irawan, “Peningkatan Performa Algoritma CART dengan Seleksi Fitur Menggunakan ABC untuk Penilaian Kredit,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 8, no. 1, pp. 199–208, 2021, doi: 10.35957/jatisi.v8i1.553.

P. D. Putra, S. Sukemi, and D. P. Rini, “Peningkatan Akurasi Klasifikasi Backpropagation Menggunakan Artificial Bee Colony dan K-NN Pada Penyakit Jantung,” J. Media Inform. Budidarma, vol. 5, no. 1, p. 208, 2021, doi: 10.30865/mib.v5i1.2634.

R. Wu, H. Zhang, S. Kim, and S. C. Cheung, “ReLink: Recovering links between bugs and changes,” SIGSOFT/FSE 2011 - Proc. 19th ACM SIGSOFT Symp. Found. Softw. Eng., pp. 15–25, 2011, doi: 10.1145/2025113.2025120.

T. Zhou, X. Sun, X. Xia, B. Li, and X. Chen, “Improving defect prediction with deep forest,” Inf. Softw. Technol., vol. 114, no. June, pp. 204–216, 2019, doi: 10.1016/j.infsof.2019.07.003.

E. Sutoyo and M. A. Fadlurrahman, “Penerapan SMOTE untuk Mengatasi Imbalance Class dalam Klasifikasi Television Advertisement Performance Rating Menggunakan Artificial Neural Network,” J. Edukasi dan Penelit. Inform., vol. 6, no. 3, p. 379, 2020, doi: 10.26418/jp.v6i3.42896.

D. Karaboga and B. Basturk, “On the performance of artificial bee colony (ABC) algorithm,” Appl. Soft Comput. J., vol. 8, no. 1, pp. 687–697, 2008, doi: 10.1016/j.asoc.2007.05.007.

H. Rao et al., “Feature selection based on artificial bee colony and gradient boosting decision tree,” Appl. Soft Comput. J., vol. 74, pp. 634–642, 2019, doi: 10.1016/j.asoc.2018.10.036.

M. Schiezaro and H. Pedrini, “Data feature selection based on Artificial Bee Colony algorithm,” EURASIP J. Image Video Process., vol. 2013, no. 1, pp. 1–8, 2013, doi: 10.1186/1687-5281-2013-47.

L. Breiman, Random Forest, vol. 45. Kluwer Academic Publishers, 2001. doi: 10.1007/978-3-030-62008-0_35.

W. Musu, A. Ibrahim, and Heriadi, “Pengaruh Komposisi Data Training dan Testing terhadap Akurasi Algoritma C4 . 5,” Pros. Semin. Ilm. Sist. Inf. Dan Teknol. Inf., vol. X, no. 1, pp. 186–195, 2021.

L. Zahedi, F. Ghareh Mohammadi, and M. H. Amini, “A2BCF: An Automated ABC-Based Feature Selection Algorithm for Classification Models in an Education Application,” Appl. Sci., vol. 12, no. 7, 2022, doi: 10.3390/app12073553.




DOI: http://dx.doi.org/10.24014/coreit.v10i1.29283

Refbacks

  • There are currently no refbacks.




Creative Commons License  site stats  
Jurnal CoreIT by http://ejournal.uin-suska.ac.id/index.php/coreit/ is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.