Detection of Certain Objects Wearing Masks in Real Time To Prevent the Spread of the Virus (Yolov3)
Abstract
Full Text:
PDFReferences
S. E. Eikenberry et al., “To mask or not to mask: Modeling the potential for face mask use by the general public to curtail the COVID-19 pandemic,” Infect. Dis. Model., vol. 5, pp. 293–308, Jan. 2020.
A. Kumar, Z. J. Zhang, and H. Lyu, “Object detection in real time based on improved single shot multi-box detector algorithm,” Eurasip J. Wirel. Commun. Netw., vol. 2020, no. 1, Dec. 2020.
S. Singh, U. Ahuja, M. Kumar, K. Kumar, and M. Sachdeva, “Face mask detection using YOLOv3 and faster R-CNN models: COVID-19 environment,” vol. 80, pp. 19753–19768, 2021.
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-December, pp. 779–788, Dec. 2016.
Z. Liang, J. Shao, D. Zhang, and L. Gao, “Small object detection using deep feature pyramid networks,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 11166 LNCS, pp. 554–564, 2018.
D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov, “Scalable object detection using deep neural networks,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 2155–2162, Sep. 2014.
I. D. Apostolopoulos and T. A. Mpesiana, “Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks,” Phys. Eng. Sci. Med., vol. 43, no. 2, pp. 635–640, Jun. 2020.
P. Soviany and R. T. Ionescu, “Optimizing the trade-off between single-stage and two-stage deep object detectors using image difficulty prediction,” Proc. - 2018 20th Int. Symp. Symb. Numer. Algorithms Sci. Comput. SYNASC 2018, pp. 209–214, Sep. 2018.
R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate object detection and semantic segmentation,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 580–587, Sep. 2014.
S. Bianco, R. Cadene, L. Celona, and P. Napoletano, “Benchmark analysis of representative deep neural network architectures,” IEEE Access, vol. 6, pp. 64270–64277, 2018.
N. D. Nguyen, T. Do, T. D. Ngo, and D. D. Le, “An Evaluation of Deep Learning Methods for Small Object Detection,” J. Electr. Comput. Eng., vol. 2020, 2020.
Z. Cai, Q. Fan, R. S. Feris, and N. Vasconcelos, “A unified multi-scale deep convolutional neural network for fast object detection,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9908 LNCS, pp. 354–370, 2016.
L. Abraham, A. Urru, N. Normani, M. P. Wilk, M. Walsh, and B. O’flynn, “Hand Tracking and Gesture Recognition Using Lensless Smart Sensors.”
B. Roy, S. Nandy, D. Ghosh, D. Dutta, P. Biswas, and T. Das, “MOXA: A Deep Learning Based Unmanned Approach For Real-Time Monitoring of People Wearing Medical Masks,” Trans. Indian Natl. Acad. Eng., vol. 5, no. 3, pp. 509–518, Sep. 2020.
DOI: http://dx.doi.org/10.24014/coreit.v8i2.17184
Refbacks
- There are currently no refbacks.
Jurnal CoreIT by http://ejournal.uin-suska.ac.id/index.php/coreit/ is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. |