Implementation of Google Translate Application Programming Interface (API) as a Text and Audio Translator

Zhara Nabila, Humairoh Ratu Ayu, Arif Surtono

Abstract


Through this translator program, it is craved that it can avail the general public to understand foreign language videos, can be useful in the world of education and technology, and can avail the persons with disabilities be up to communicate.The method used is a classification method that functions to detect the flow of shapes to instruct the class attribute as the task of the input attribute by generating automatic output through three stages, namely Machine Learning, Natural Language Processing, and Speech.The results showed that 90.38% of videos were successfully translated into text and audio, 9.62% of videos failed to be translated because the owner limited public interaction, and 89%-97% synchronization between text and audio.In this research, a text and audio translator program has been created using the Application Programming Interface (API). This program is a configuration of deep learning, machine translation, and text-to-speech designed using the high-level programming language python. The system used is a predictive system in which the system tries to predict the output equally the wishes of the user.

 


Full Text:

PDF

References


Yusri and Mantasiah R, Linguistik Mikro Kajian Internal Bahasa dan Penerapannya. Sleman: Deepublish, 2020.

F. Unsiah and R. Yuliati, Pengantar Ilmu linguistik. Malang: UB Press, 2018.

N. P. Putri, “Eksistensi Bahasa Indonesia pada Generasi Millennial,” Jurnal Ilmiah Pembelajaran Bahasa dan Sastra, vol. 5, no. 1, 2017.

D. Eberhard, G. F. Simons, and C. Fenning, Ethnologue: Languages of The World, 22nd Edition. Dallas: SIL International, 2019.

I. D. P. Wijana, “Pemertahanan dan Pengembangan Bahasa Indonesia,” Jurnal Ilmiah Kebahasaan dan Kesastraan, vol. 46, no. 1, 2018.

I. Sari, “Kesulitan Mahasiswa dalam Pembelajaran Bahasa Inggris,” Jurnal Manajemen Tools, vol. 11, no. 1, 2019.

Irian and Y. Yudhistira, “Implementasi Application Programming Interface (API) Kawal Corona sebagai Media Informasi Pandemik Covid-19 Berbasis Android,” Jurnal Sistem Informasi dan Teknologi Peradaban (JSITP), vol. 2, no. 1, 2020.

M. F. A, Muri, H. S. Utomo, and R. Sayyidati, “Search Engine Get Application Programming Interface,” Jurnal Sains dan Informatika, vol. 5, no. 2, 2019.

K. Yudhistiro, “Pemanfaatan Teknologi Text-to-Speech sebagai Media Pembelajaran pada Laboratorium Bahasa Inggris,” Jurnal Teknologi dan Manajemen Informatika, vol. 2, no. 1, 2016.

R. G. Guntara, A. Nuryadin, and B. Hartanto, “Pemanfaatan Google Speech to Text untuk Aplikasi Pembelajaran Kamus Bahasa Sunda pada Platform Mobile Android,” Jurnal Sains dan Teknologi, vol. 4, no. 1, pp. 10-19, 2021.

V. S. Ginting, Kusrini, and E. Taufiq. “Implementasi Algoritma C4.5 untuk Memprediksi Keterlambatan Pembayaran Sumbangan Pembangunan Pendidikan Sekolah Menggunakan Python,” Jurnal Teknologi Informasi dan Komunikasi, vol. 10, no. 1, 2020.

J. D. Kalleher, Deep Learning. Cambridge: The MIT Press, 2019.

P. Goyal, S. Pandey, and K. Jain, Deep Learning for Natural Language Processing Creating Neural Networks with Python. Bangalore: Apress, 2018.

M. Hagiwara, Real-World Natural Language Processing. Shelter Island: Manning Publication Co., 2021.




DOI: http://dx.doi.org/10.24014/coreit.v8i1.15629

Refbacks

  • There are currently no refbacks.




Creative Commons License  site stats  
Jurnal CoreIT by http://ejournal.uin-suska.ac.id/index.php/coreit/ is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.