Implementasi Algoritma FP-Growth untuk Menemukan Pola Keterkaitan Antara Matakuliah Pemrograman dan Matakuliah Matematika

Zurneli Kurnia Putri. P, Iwan Iskandar, Alwis Nazir

Abstract


The specification of programming skills is one of the focuses of learning in the Informatics Engineering study program which requires students to understand and get good grades in all courses related to programming. The subject that is considered to have a relationship with the programming field is the Mathematics course. Efforts to determine the correlation between programming courses and mathematics courses through one of the association algorithms in data mining, namely the FP-Growth algorithm. FP-Growth was chosen because it has a faster data pattern execution rate than the a priori algorithm. The final stage of KDD produces 1227 data which is then processed using the FPGrowth algorithm. Tests with a minimum support value of 0.5 and minimum confidence of 0.7 show the same number of patterns between applications built with the SPMF application of 52250 patterns. The highest support value of 51% and the highest confidence value of 98% and the highest lift ratio value of 1.1941 in the combination of itemset patterns indicate that if students pass programming courses, then mathematics courses can also pass or vice versa.

Full Text:

PDF

References


UIN Suska Riau, Panduan Dan Informasi Akademik. Pekanbaru: Suska Press, 2018.

B. D. Meilani and M. Asadulloh, “Data Mining untuk Menggali Pola Mahasiswa Baru

Menggunakan Metode Frequent Pattern Growth (Studi Kasus: Institut Teknologi Adhi Tama

Surabaya),” in Prosiding Seminar Nasional Sains dan Teknologi Terapan, 2015, pp. 269–276.

R. Anggrainingsih, N. R. Khoirudin, and H. Setiadi, “Discovering drugs combination pattern using

FP-growth algorithm,” in 2017 4th International Conference on Electrical Engineering, Computer

Science and Informatics (EECSI), 2017, pp. 1–4.

A. A. Fajrin and A. Maulana, “Penerapan Data Mining Untuk Analisis Pola Pembelian Konsumen

Dengan Algoritma Fp-Growth Pada Data Transaksi Penjualan Spare Part Motor,” Kumpulan Jurnal

Ilmu Komputer (KLIK), vol. 5, no. 01, pp. 1–10, 2018.

R. R. Mahmudah and E. Aribowo, “Penggunaan Algoritma FP-Growth untuk Menemukan Aturan

Asosiasi pada Data Transaksi Penjualan Obat di Apotek (Studi Kasus: Apotek UAD),” JSTIE

(Jurnal Sarjana Teknik Informatika)(E-Journal), vol. 2, no. 3, pp. 130–139, 2014.

N. R. Ardani and N. Fitrina, “Sistem Rekomendasi Pemesanan Sparepart Dengan Algoritma FpGrowth (Studi Kasus Pt. Rosalia Surakarta),” SEMNASTEKNOMEDIA ONLINE, vol. 4, no. 1, p. 3,

Ririanti, “Implementasi Algoritma FP-Growth Pada Aplikasi Prediksi Persediaan Sepeda Motor

(Studi Kasus PT. Pilar Deli Labumas),” Pelita Informatika Budi Darma, vol. 6, no. 1, pp. 139–144, 2014.

M. I. Ghozali and W. H. Sugiharto, “Analisa Pola Belanja Menggunakan Algoritma Fp Growth, Self

Organizing Map (Som) Dan K Medoids,” Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer, vol. 8, no. 1, pp. 317–326, 2017.

O. Maimon and L. Rokach, Data mining and knowledge discovery handbook. Springer, 2005.

M. Fauzy and I. Asror, “Penerapan metode association rule menggunakan algoritma apriori pada

simulasi prediksi hujan wilayah kota bandung,” Jurnal Ilmiah Teknologi Infomasi Terapan, vol. 2,

no. 3, 2016.




DOI: http://dx.doi.org/10.24014/coreit.v7i2.15351

Refbacks





Creative Commons License  site stats  
Jurnal CoreIT by http://ejournal.uin-suska.ac.id/index.php/coreit/ is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.