Pemanfaatan Metode Klasifikasi Naïve Bayes Untuk Pendeteksi Berita Hoax Pada Artikel Berbahasa Indonesia

Soleman Soleman

Abstract


Berita hoax sudah sangat banyak tersebar di internet. Kemudahan dalam membuat dan membagikan merupakan salah satu faktornya. Berita hoax menjadi ancaman dan konsentrasi banyak pihak, muncul masalah dalam mengidentifikasi atau mengklasifikasikannya karena tidak ada pola yang dapat diidentifikasikan, serta gaya penulisan bersifat bebas dan tidak kaku. Kurang akuratnya sistem deteksi hoax yang ada diakibatkan belum ditemukannya metode dan atribut yang digunakan untuk klasifikasi berita hoax dengan akurasi yang tinggi. Atas dasar itulah penelitian ini dilakukan, seperti pada kebanyakan klasifikasi berita hoax yang dijadikan acuan pada penelitian ini, dilakukan praproses (case folding, tokenisasi, stemming dan stopword removal), ekstrasi fitur dan penambahan atribut selain dari praproses artikel seperti website tempat artikel di publikasi dan status website tersebut. Hasil dari penelitian ini didapatkan akurasi sebesar 72% yang ternyata terjadi penurunan 6.6% dibandingkan dengan penelitian sebelumnya yang sebesar 78.6% dikarenakan satu website yang hanya mempublikasi satu artikel hoax dan dibiarkan domain website tersebut expired, dengan begitu terjadi pengurangan terhadap bobot nilai klasifikasi.

Kata Kunci : Artikel Hoax, klasifikasi, Naïve Bayes, Union.


Full Text:

PDF

References


. Adetunji, A B, Oguntoye, J P, Fenwa, O D, Akande, N O. “Web Document Classification Using Naïve Bayes”. Journal of Advances in Mathematics and Computer Science 29(6): 1-11, 2018; Article no.JAMCS.34128 ISSN: 2456-9968, 2017

. APJII. Asosiasi Penyelenggara Jasa Internet Indonesia. 2017, https://www.apjii.or.id/content/read/39/342/Hasil-Survei-Penetrasi-dan-Perilaku-Pengguna-Internet-Indonesia-2017.

. Chen, Yoke Yie, et al. “Email Hoax Detection System Using Levenshtein Distance Method.” Journal of Computers, vol. 9, no. 2, 2014, pp. 441–46, doi:10.4304/jcp.9.2.441-446.

. Dimas Wahyu. Kata "Hoaks" Dan "Meme" Sudah Tercatat Di Kamus Bahasa Indonesia - Kompas.com. 2017.

. Kuliahkomputer. Pengujian Dengan Confusion Matrix. 2018, http://www.kuliahkomputer.com/2018/07/pengujian-dengan-confusion-matrix.html.

. Kusrini, luthfi taufiq Emha. Algoritma Data Mining. Andi, 2009.

. Informatikalogi. Pembobotan Kata atau Term Weighting TF-IDF. 2016, https://informatikalogi.com/term-weighting-tf-idf/#1.

. Mastel. “Hasil Survey Mastel Tentang Wabah Hoax Nasional.” Mastel, 2017.

. Prasetijo, Agung B., et al. “Hoax Detection System on Indonesian News Sites Based on Text Classification Using SVM and SGD.” Proceedings - 2017 4th International Conference on Information Technology, Computer, and Electrical Engineering, ICITACEE 2017, vol. 2018–Janua, 2018, pp. 45–49, doi:10.1109/ICITACEE.2017.8257673.

. Pratiwi, Inggrid Yanuar Risca, et al. “Study of Hoax News Detection Using Naïve Bayes Classifier in Indonesian Language.” 2017 11th International Conference on Information & Communication Technology and System (ICTS), no. February, 2017, pp. 73–78, doi:10.1109/ICTS.2017.8265649.

. Rasywir, Errissya, and Ayu Purwarianti. “Eksperimen Pada Sistem Klasifikasi Berita Hoax Berbahasa Indonesia Berbasis Pembelajaran Mesin.” Jurnal Cybermatika, vol. 3, no. 2, 2015, pp. 1–8.

. Sarkar, Dipanjan. Text Analytics with Python. 2016, doi:10.1007/978-1-4842-2388-8.

. Tim VIVA. Anindya Bakrie: Penyebar Hoax Terbanyak Itu Media Sosial – VIVA. 2018, https://www.viva.co.id/berita/nasional/1005218-anindya-bakrie-penyebar-hoax-terbanyak-itu-media-sosial.

. Wang, Yong Hodges, Julia Tang, Bo. “Classification of Web Documents Using a Naive Bayes Method” Department of Computer Science & Engineering, Mississippi State University Mississippi State, MS 39762-9637, 2015

. Yunita. Ini Cara Mengatasi Berita “Hoax” di Dunia Maya. 2017, https://kominfo.go.id/content/detail/8949/ini-cara-mengatasi-berita-hoax-di-dunia-maya/0/sorotan_media.

. Zhang, Yunan, et al. “Using Multi-Features and Ensemble Learning Method for Imbalanced Malware Classification.” Proceedings - 15th IEEE International Conference on Trust, Security and Privacy in Computing and Communications, 10th IEEE International Conference on Big Data Science and Engineering and 14th IEEE International Symposium on Parallel and Distributed Proce, 2016, pp. 965–73, doi:10.1109/TrustCom.2016.0163.




DOI: http://dx.doi.org/10.24014/coreit.v7i2.14290

Refbacks





Creative Commons License  site stats  
Jurnal CoreIT by http://ejournal.uin-suska.ac.id/index.php/coreit/ is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.