Analisis Perbandingan Algoritma Naive Bayes Classifier dan Learning Vector Quantization dalam Sistem Identifikasi Boraks pada Bakso Daging Sapi

Abd. Charis Fauzan, Sofi Dwi Purwanto

Abstract


Meatballs are processed meat products that are prone to be mixed with harmful substances as processed ingredients. This study aims to analyze the performance of the Naive Bayes Classifier method and the Learning Vector Quantization neural network as an object of comparison in order to find the best approach to detecting the borax content in beef noodles. The data used in the study consisted of 2 populations, namely data from processed meatballs independently with different levels of borax and data from surveys in the field. Based on the results of data testing using the instrument, the best accuracy level is the Naive Bayes Classifier approach, which is 93.33% for the population of meatballs containing borax. While the test for data without using the best performance tool also obtained the Naive Bayes Classifier approach with an accuracy of 79.34%.

Full Text:

PDF

References


F. F. Facette, "23 Tahun Jual Boraks, Pedagang: Yang Beli Pembuat Bakso dan Kerupuk," Jawa Pos,

December 11, 2018. [Online]. Available: https://www.jawapos.com. [Accessed May 31, 2020].

N. Sari, "Penggilingan Bakso Siapkan Boraks, Pemprov DKI Janji Cek Industri Rumahan," Kompas,

October 29, 2018. [Online]. Available: https://www.megapolitan.kompas.com. [Accessed June 5,

.

P. Santoso, "Bakso Mengandung Boraks Ditemukan di Ramadhan Fair Medan,"Media Indonesia,

June 16, 2016. [Online]. Available: https://www.mediaindonesia.com. [Accessed June 5, 2020].

R. T. Padmaningrum dan S. Marwati, “Tester Kit Untuk Uji Boraks dalam Makanan,” Jurnal

Penelitian Saintek, vol. 18, no. 1, April, 2013.

F. K. Hartati, “Analisis Boraks Secara Cepat, Mudah dan Murah pada Kerupuk,” Jurnal Teknologi

Proses dan Inovasi Industri, vol. 2, no. 1, pp. 33–37, 2017.

W. S. Nugroho dan E. D. Astuti, “Kemampuan Reagen Curcumax Mendeteksi Boraks dalam Bakso

yang Direbus,” Jurnal Sain Veteriner, JSV 35 (1), pp. 42–48, 2017.

R. Fuadi, dkk., “Pemeriksaan Kandungan Boraks pada Bakso Daging Sapi di Kabupaten Pidie Jaya,”

Jurnal Medika Veterinaria, vol. 10 No. 2, pp. 123–124, 2016.

I.C. Wibowo, A.C. Fauzan, M.D.P. Yustiana, F.A. Qhabib, “Komparasi Algoritma Naive Bayes dan

Decision Tree Untuk Memprediksi Lama Studi Mahasiswa,” ILKOMNIKA: Journal of Computer

Science and Applied Informatics, vol. 1, no. 2, pp. 65-74, 2019.

Y. Wibisono, Metode Statistik, Yogyakarta: Gajah Mada University Press, 2005.

I. B. Santoso, “Membangun Gaussian Classifier dalam Mengenali Objek dalam Bentuk Image,” Matics, vol. 1, pp. 1–5, 2014.

A. R. Webb and K. D. Copsey, Statistical Pattern Recognition, 3rd ed., Mathematics and Data

Analysis Consultancy Malvern, United Kingdom: John Wiley & Sons Ltd., 2011.

Z. Q. Zhao, “ApLeaf: An Efficient Android-based Plant Leaf Identification System,” Neurocomputing, pp. 1–11, 2014.




DOI: http://dx.doi.org/10.24014/coreit.v7i2.11564

Refbacks

  • There are currently no refbacks.




Creative Commons License  site stats  
Jurnal CoreIT by http://ejournal.uin-suska.ac.id/index.php/coreit/ is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.