Prediksi Jumlah Tunggakan Pajak Jatuh Tempo Menggunakan Algoritma Support Vector Regression

Mustakim Mustakim, celsa bella, Yoga Rizola Pratama

Abstract


Pajak kendaraan bermotor merupakan pajak daerah yang memiliki kontribusi besar bagi peningkatan pendapatan asli daerah. Salah satu sumber pendapatan asli daerah di Kabupaten Pasaman adalah dana bagi hasil pajak kendaraan, yang dialokasikan untuk pendidikan, pembangunan dan  sarana transportasi. Peningkatan tunggakan pajak kendaraan berpengaruh signifikan terhadap pendapatan asli daerah dan akan menganggu kelangsungan pembangunan daerah. Penelitian ini dimaksudkan untuk melakukan prediksi jumlah tunggakan pajak kendaraan jatuh tempo di Kabupaten Pasaman dengan penerapan data mining yaitu algoritma support vector regression sehingga akan diketahui jumlah tunggakan untuk periode selanjutnya. Hasi prediksi periode pertama menunjukkan sebanyak 8 Kecamatan mengalami kenaikan jumlah tunggakan pajak, dan pada periode kedua  sebanyak 7 Kecamatan mengalami peningkatan jumlah tunggakan. Model prediksi terbaik menggunakan teknik k-Fold Cross Validation, untuk periode pertama didapat pada Fold-1 dengan nilai MSE 4,8% dan Tingkat Akurasi (R) 91%, untuk periode kedua model terbaik juga didapat pada Fold-1 dengan MSE 0,14% dan R 96%.

Full Text:

PDF

References


. Ardianti, D. (2014). Pelaksanaan pemungutan pajak kendaraan bermotor oleh dinas pendapatan daerah provinsi jawa timur (studi kasus di kantor dinas pendapatan daerah provinsi jawa timur unit pelaksana teknis dinas (uptd) malang kota). Kumpulan Jurnal Mahasiswa Fakultas Hukum.

. Yuswanto, O. D. M. P. D., dkk. (2018). Pemanfaatan dana bagi hasil pajak kendaraan bermotor di kota bandar lampung. JURNAL HIMA HAN, 5(1).

. Siregar, Y. A., Saryadi, S., dan Listyorini, S. (2012). Pengaruh pelayanan fiskus dan pengetahuan perpajakan terhadap kepatuhan wajib pajak (studi empiris terhadap wajib pajak di semarang tengah). Jurnal Ilmu Administrasi Bisnis, 1(2), 295–304.

. Prasad, M., Florence, L., dan Arya, A. (2015). A study on software metrics based software defect prediction using data mining and machine learning techniques. International Journal of Database Theory and Application, 8(3), 179–190.

. Hermawati, F. A. (2013). Data Mining. Yogyakarta: Penerbit Andi.

. Mustakim, M., Buono, A., dan Hermadi, I. (2015). Support vector regression untuk prediksi produktivitas kelapa sawit di provinsi riau. Jurnal Sains dan Teknologi Industri, 12(2), 179–188.

. Akande, K. O., Owolabi, T. O., Olatunji, S. O., dan Abdulraheem, A. (2016). A novel homogenous hybridization scheme for performance improvement of support vector machines regression in reservoir characterization. Applied Computational Intelligence and Soft Computing, 2016.

. Agustina, S. D., Bella, C., dan Ramadhan, M. A. (2018). Support vector regression

algorithm modeling to predict the availability of foodstuff in indonesia to face

the demographic bonus. Dalam Journal of physics: Conference series (Vol.

, hal. 012240.

. Milovic, B. (2012). Prediction and decision making in health care using data mining. Kuwait chapter of arabian journal of business and management review, 33(848), 1–11.

. David, J. (2007). Hand. principles of data mining. Drug safety, 30(7), 621–622.

. Maimon, O., dan Rokach, L. (2005). Introduction to supervised methods. Dalam Data mining and knowledge discovery handbook (hal. 149–164). Springer.

. Mustakim, M., Buono, A., dan Hermadi, I. (2016). Performance comparison between support vector regression and artificial neural network for prediction

of oil palm production. Jurnal Ilmu Komputer dan Informasi, 9(1), 1–8.

. Smola, A. J., dan Scholkopf, B. (2004). A tutorial on support vector regression. ¨ Statistics and computing, 14(3), 199–222.

. Kale, S., Kumar, R., dan Vassilvitskii, S. (2011). Cross-validation and mean-square stability. Dalam In proceedings of the second symposium on innovations in computer science (ics2011).


Refbacks

  • There are currently no refbacks.


FAKULTAS SAINS DAN TEKNOLOGI
UIN SUSKA RIAU

Kampus Raja Ali Haji
Gedung Fakultas Sains & Teknologi UIN Suska Riau
Jl.H.R.Soebrantas No.155 KM 18 Simpang Baru Panam, Pekanbaru 28293
Email: sntiki@uin-suska.ac.id