Analisa Perbandingan Metode Dempster-Shafer (DS) Dan Certainty Factor (CF) Dalam Mendiagnosa Hama Dan Penyakit Kacang Tanah

Okfalisa Okfalisa, Yelfi Vitriani, M Fadhli Ihsan, Fitri Insani, Novi Yanti, Frica A Ambarwati, Eggy P

Abstract


Beberapa masalah meningkat untuk meningkatkan diagnosa hama dan penyakit pada kacang tanah. Adanya kendala yang dihadapi pada buruknya kesuburan tanah, penyakit, jamur, virus, dan hama dapat memicu mengurangi produktivitas tanaman, kualitas dan nilai. Terlebih, beberapa sumber langka dari varietas unggul, serta pengetahuan dari petani yang terbatas pada produksi benih, panen dan pengolahan tanaman itu sendiri. Makalah ini mengkaji penerapan metode Dempster-Shafer (DS) dan metode Certainty Factor (CF) untuk akurasi data yang tepat dalam mencari solusi yang diharapkan dengan menganalisa perbandingan metode tersebut. Analisis mengikuti proses dari sistem pakar termasuk pengolahan gejala-gejala, cara pengendalian, nilai probabilitas untuk DS dan CF, Rulebase Reasoning serta hasil diagnosa sistem dan pakar. Untuk menguji validitas dan keakuratan data kedua metode dengan Confusion Matrix, statistika deskriptif, Uji Mann Whitney dan uji T Independent Sample. Sebagai hasilnya, ada 13 hama/penyakit dari 13 terdapat perbedaan nilai kepercayaan antara kedua metode. Rata rata perbedaan dari 13 data uji adalah 16,48%. Terlihat pada metode CF nilai kepercayaan lebih tinggi daripada metode DS. Pengujian ini juga mencari solusi yang diharapkan berdasarkan keakuratan data dari metode yang tepat berdaskan uji T Independent Sample. Dari hasil perhitungan hasil uji T Independent Sample pada asumsi data terdistribusi normal dijelaskan bahwa didapatkan hasil bahwa probabilitas kesalahan (0,000), sedangkan pada kriteria pengujian dengan tingkat signifikansi α 0,05 (keyakinan 95%). Ini menunjukkan bahwa Hipotesis ditolak, maka dapat disimpulkan bahwa metode DS lebih tepat untuk diterapkan pada sistem pakar diagnosa hama dan penyakit pada kacang tanah.


Full Text:

PDF

References


P.C. Nautiyal, “Groundnut: Post-harvest Operations“, Organization: National Research Centre for Groundnut (ICAR), 2002.

Members of the Peanut CRSP External Evaluation Panel, “The Peanut Collaborative Research Support Program (CRSP) 2005 External Evaluation Report“, United States Agency for International Development, 2005.

Pazderka, Catherine & Emmott, Andrew, “Chatham House Procurement for Development Forum: Groundnuts Case Study”, Chatham house, 10 St James's Square, London SW1Y 4LE, 2010.

International Trade Centre (ITC) Geneva, “Edible Nuts – Groundnuts”, Market Insider/ITC, 2015.

United States Department of Agriculture (USDA) Office of Global Analysis, “Oilseeds: World Markets and Trade”, World Agricultural Outlook Board/USDA, 2016.

Settaluri, V. S., Kandala , C. V. K., Puppala, N., Sundaram, J., “Peanuts and Their Nutritional Aspects”, Food and Nutrition Sciences, 3, 1644-1650, 2012.

Hoffman, Jay R., & Falvo, Michael J., “Protein – Which is Best?”, International Society of Sports Nutrition Symposium, June 18-19, Las Vegas NV, 2005.

Nigude, V.K., Patil, S.A., Bagade, A.S., & Mohite, P.B., “Seasonal Incidence of Sucking Pests of Groundnut (Arachis hypogaea L.)”, International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 7 Number 01 (2018), 2018.

Council for Scientific and Industrial Research (CSIR) - Crops Research Institute (CRI), “Integrated Practices to Manage Diseases, Nematodes, Weeds and Arthropod Pests of Groundnut in Ghana”, Kumasi, Ghana, West Africa and North Carolina State University (NCSU), USA, 2014.

IWO, Godfrey Akpan & OLORUNJU, P.E., “Yield Stability and Resistance to Leaf Spot Diseases and Rosette in Groundnut”, Czech J. Genet. Plant Breed., 45, 2009 (1): 18–25, 2009.

Ranga Rao GV, Rameshwar Rao V and Nigam SN. 2010. Postharvest

insect pests of groundnut and their management. Information Bulletin

No.84. Patancheru 502 324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics. ISBN 978-92-9066-528-1. Order code IBE 084. 20 pp, 2010.

G. C. BISWAS, “Insect Pets Of Groundnut (Arachis hypogaea L.), Nature Of Damage and Succession With The Crop Stages”, Bangladesh J. Agril. Res. 39(2): 273-282, ISSN 0258-7122, June 2014.

Gil, S. Vargas, Pedelini, R., Oddino, Zuza, C., Marinelli, M., A. & G.J. “The Role Of Potential Biocontrol Agents In The Management Of Peanut Root Rot In Argentina”, Journal of Plant Pathology (2008), 90 (1), 35-41 Edizioni ETS Pisa, 2008.

Mumuni Abudulai, Jesse Naab, Shaibu Seidu Seini, Israel Dzomeku, Kenneth Boote, Rick Brandenburg & David Jordan, “Peanut (Arachis hypogaea) response to weed and disease management in northern Ghana, International Journal of Pest Management, DOI:10.1080/09670874.2017.1371806, 2017.

Maseleno, Andino & Hasan, Md. Mahmud, “The Dempster-Shafer Theory Algorithm and its Application to Insect Diseases Detection”, International Journal of Advanced Science and Technology Vol. 50, January, 2013.

Khairina, Dyna Marisa, Hatta, Heliza Rahmania, Rustam Rustam, Maharani, Septya, “Automation Diagnosis of Skin Disease in Humans using Dempster-Shafer Method”, E3S Web of Conferences 31, 11006 (2018) ICENIS, 2017.

Maseleno Andino, “Skin Diseases Expert System using Dempster Shafer Theory”, I.J. Intelligent Systems and Applications, 2012, 5, 38-44 MECS DOI: 10.5815/ijisa.2012.05.06, 2012.

K. H. Hui, M. H. Lim, M. S. Leong & S. M. A. Al-Obaidi, “Dempster-Shafer Evidenc Theory For Automated Bearing Fault Diagnosis”, International Journal of Mechanical Engineering and Technology (IJMET) Publication Scopus Volume 8, Issue 4, April 2017, pp. 277–288 Article ID: IJMET_08_04_031 ISSN Online: 0976-6359, 2017.

Wen Jiang, Boya Wei, Chunhe Xie & Deyun Zhou, “An evidential sensor fusion method in fault diagnosis (Dempster–Shafer)”, Advances in Mechanical Engineering 2016, Vol. 8(3) 1–7, 2016.

Hong zhan and jiwen tan, “New method for fault diagnosis based on Dempster-shafer theory”, Information Technology Journal 12 (10) 2069-2072 ISSN 1812-5638, 2013.

Agus, Fahrul, Wulandari, Hernandha Eka, Astuti, Indah Fitri, “Expert System With Certainty Factor For Early Diagnosis Of Red Chili Peppers Diseases”, Journal of Applied Intelligent System (e-ISSN : 2502-9401 | p-ISSN : 2503-0493) Vol. 2 No. 2, December 2017, pp. 52 – 66, 2017.

Minarni, Anisah Fadhillah, “Expert System in Detecting Rice Plant Diseases Using Certainty Factor”, International Journal of Dynamic Systems, Measurement and Control Vol. 2, Issue. 1 e-ISSN: 2502-0692, 2017. p-ISSN: 2502-0692, 2017.

Whisnu Ulinnuha Setiabudi, Endang Sugiharti, Florentina Yuni Arini, “Expert System Diagnosis Dental Disease Using Certainty Factor Method”, Scientific Journal of Informatics Vol. 4, No. 1, 2017.

D P S Setyohadi, R A Octavia, T D Puspitasari, “An Expert System for Diagnosis of Broiler Diseases using Certainty Factor”, The 2nd International Joint Conference on Science and Technology (IJCST) 2017 IOP Publishing IOP Conf. Series: Journal of Physics: Conf. Series 953 (2017) 012118 doi :10.1088/1742-6596/953/1/012118, 2017.

Panggabean, Erwin, “Comparative Analysis Of Dempster Shafer Method With Certainty Factor Method For Diagnose Stroke Diseases”, International Journal Of Artificial Intelegence Research Vol 2, No 1, June 2018, pp. 32-37 ISSN: 2579-7298, 2018.

Setyarini, Eka, Putra, Darma & Purnawan, Adi, “The Analysis of Comparison of Expert System of Diagnosing Dog Disease by Certainty Factor Method and Dempster-Shafer Method”, IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 2 ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814, 2013.

Kim, Jae Kwon, Seo, Seong Il, Park, Yong Hyun, dkk, “A Deep Belief Network and Dempster-Shafer-Based Multiclassifier for the Pathology Stage of Prostate Cancer”, Hindawi Journal of Healthcare Engineering Volume 2018, Article ID 4651582,2018.

Zhu, WenBo, Yang, Huicheng, Jin, Yi, & Liu, Bingyou, “A Method for Recognizing Fatigue Driving Based on Dempster-Shafer Theory and Fuzzy Neural Network”, Hindawi Mathematical Problems in Engineering Volume 2017, Article ID 6191035, 2017.

Schubert, Johan, “Conflict management in Dempster–Shafer theory using the degree of falsity”, International Journal of Approximate Reasoning 52 (2011) 449–460, 2010.

Curley, Shawn P., “The application of Dempster-Shafer theory demonstrated with justification provided by legal evidence”, Judgment and Decision Making, Vol. 2, No. 5, October 2007, pp. 257–276, 2007.

Srivastava, Rajendra, dkk, “An Information Systems Security Risk Assessment Model under Dempster-Shafer Theory of Belief Functions. Journal of Management Information Systems, 22 (4), 109-142, 2006.

Nur, Esma, “Decision Making With Consonant Belief Functions: Discrepancy Resulting With The Probability Transformation Method Used”, Yugoslav Journal of Operations Research 24 (2014), Number 3, 359-370 DOI: 10.2298/YJOR140401033C, 2014.

E. Pasha , H.R. Mostafaei, M. Khalaj, F. Khalaj b, “Fault Diagnosis of Engine Using Information Fusion Based on Dempster-Shafer Theory”, Journal of Basic and Applied Scientific Research J. Basic. Appl. Sci. Res., 2(2)1078-1085 ISSN 2090-4304, 2012.

Yanni Wang, Yaping Dai, Yu-wang Chen, Fancheng Meng, “The Evidential Reasoning Approach to Medical Diagnosis using Intuitionistic Fuzzy Dempster-Shafer Theory”, International Journal of Computational Intelligence Systems, Vol. 8, No. 1 (2015) 75-94, 2014.

Pei, Di, Yue, Jianhai & Jiao, Jing, “Rolling bearing fault diagnosis based on information fusion using Dempster-Shafer evidence theory”, 5th Asia Conference on Mechanical and Materials Engineering (ACMME 2017) IOP Publishing IOP Conf. Series: Materials Science and Engineering 241 (2017) 012035, 2017.

Prambudi, Dwi Arief, Widodo, Catur Edi, & Widodo, Aris Puji, “Expert System Application of Forward Chaining and Certainty Factors Method for The Decision of Contraception Tools”, E3S Web of Conferences 31, 10009 (2018) ICENIS, 2017.

Yahya,Fahmi, Diantoro,Markus, Kusairi, Sentot, “Development of Diagnostic and Remedial Program-Based Interactive Multimediato Reduce Student’s Misconceptions on Geometric Optics”, Proceedings International Conference on Mathematics, Sciences and Education, University of Mataram 2015 Lombok Island, Indonesia, 2015.

Ambara, Billy, Putra, Darma, & Rusjayanthi, Dwi, “Fuzzy Expert System of Dental and Oral Disease with Certainty Factor”, IJCSI International Journal of Computer Science Issues, Volume 14, Issue 3, ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784, 2017.

D P S Setyohadi, R A Octavia, T D Puspitasari, “An Expert System for Diagnosis of Broiler Diseases using Certainty Factor”, The 2nd International Joint Conference on Science and Technology (IJCST) 2017 IOP Publishing IOP Conf. Series: Journal of Physics: Conf. Series 953, 2017.

Syarief, Mohammad, Prastiti, Novi, Setiawan, Wahyudi, “Comparison of Naïve Bayes and Certainty Factor Method for Corn Disease Expert System: Case in Bangkalan, Indonesia”, Journal of Engineering Research and Application ISSN: 2248-9622, Vol. 7, Issue 11, (Part -2) November 2017, pp.30-34, 2017.

Maria Navin J R, Balaji K, “ Performance Analysis of Neural Networks and Support Vector Machines using Confusion Matrix”, International Journal of Advanced Research in Science, Engineering and Technology Vol. 3, Issue 5, 2016.


Refbacks

  • There are currently no refbacks.


FAKULTAS SAINS DAN TEKNOLOGI
UIN SUSKA RIAU

Kampus Raja Ali Haji
Gedung Fakultas Sains & Teknologi UIN Suska Riau
Jl.H.R.Soebrantas No.155 KM 18 Simpang Baru Panam, Pekanbaru 28293
Email: sntiki@uin-suska.ac.id