MODIFIKASI METODE ITERASI DUA LANGKAH DENGAN SATU PARAMETER

Sri Annisa Djumadila, Wartono Wartono

Abstract


Metode Potra-Ptak, Newton-Steffensen dan Varian Newton adalah keluarga metode iterasi berorde konvergensi tiga untuk menyelesaikan persamaan nonlinear. Pada makalah ini, penulis mengkontruksi metode iterasi dua langkah dengan menjumlahkan metode Potra Ptak-Newton Steffensen dan Varian Newton. Berdasarkan hasil penelitian diperoleh persamaan iterasi baru yang memiliki orde konvergensi empat dan melibatkan tiga evaluasi fungsi pada setiap iterasinya. Indeks efisiensi metode baru tersebut adalah 1,587401. Simulasi numerik dilakukan dengan menggunakan beberapa fungsi untuk menunjukkan efeisiensi dan performa metode iterasi baru.

Full Text:

PDF

References


Chun, Changbum. “A Family Of Composite Fourth-Order Iterative Methods For Solving Nonlinear Equations,” Applied Mathematics and Computation. Vol. 187, halaman 951-956. 2007.

Ezzati, R. “On The Contructions Of New Iterative Methods With Fourth-Order Convergence By Combing Previous Methods,” International Mathematical Forum. Vol. 6, No. 27, halaman 1319-1326. 2011.

Jisheng, Kou., L. Yitian, dan W. Xiuhua. “A Composite Fourth-Order Iterative Method For Solving Nonlinear Equations,” Applied Mathematics and Computation. Vol. 184, halaman 471-475. 2007.

Kung, H.T., dan Traub, J.F. “Optimal Order of One-Point and Multipoint Iteration,” Journal of the Associatiom for Computing Machinery. Vol. 21, No. 4, halaman 643-651. 1974.

Sharifi, S., M. Ferrara., N.M.A. Nik Long., dan M. Salimi. “Modified Potra-Ptak Method To Determine The Multiple Zeros Of Nonlinear Equations,” 2015.

Sharma, J.R. “A Composite Third Order Newton-Steffensen Method For Solving Nonlinear Equations,” Applied Mathematics and Computation. Vol. 169, halaman 242-246. 2005.

Weerakon, S., dan T.G.I Fernando. “A Variant Of Newton’s Method With Accelerated Third-Order Convergence,” Applied Mathematics Letters. Vol. 13, halaman 87-93. 2000.

Halley E. A New Ecxat and Easy Method fo Finding the Roots on Any Quations Generally without any Previous Reduction. Philos. Trans. Roy. Soc. London. 1694; 18: 136 – 148.

Amat S. et. al. On the Global Convergence of Chebyshev’s Iterasive Method. Journal of Computational and Applied Mathematics. 2008; 220: 17 – 21.

Traub JF. Iterative Method for Solution of Equation, Prentice Hall, Englewood Cliffs, 1964.

Amat S, et. al. Geometric Construction of Iterative Functions to Solve Nonlinear Equations. Journal of Computational and Applied Mathematics. 2003; 157: 197 – 205.

Melmal A. Geometry and Convergence of Euler’s and Halley’s Method. SIAM Review. 1997; 39(4): 726 – 735.


Refbacks

  • There are currently no refbacks.


FAKULTAS SAINS DAN TEKNOLOGI
UIN SUSKA RIAU

Kampus Raja Ali Haji
Gedung Fakultas Sains & Teknologi UIN Suska Riau
Jl.H.R.Soebrantas No.155 KM 18 Simpang Baru Panam, Pekanbaru 28293
Email: sntiki@uin-suska.ac.id