THE COMPARISON OF VEHICLE SPEED ACCURACY USING VIDEO BASED MIXTURE OF GAUSSIAN 2 METHOD AND K-NEAREST NEIGHBOR METHOD
Abstract
Full Text:
PDFReferences
Bishop, C., M., Neural Networks for Pattern Recognition, penerbit Clarendon Press, 1995, hal. 70-73.
Bloisi, D., D., Grillo, A., Pennisi, A., Iocchi, L., dan Passareti, C., 2015. Multi-Modal Background Model Initialization. International Conference on Image Analysis and Processing 2015, Vol. 928l, Hal. 485 – 492, Agustus 2015.
Bueche, F., J., dan Hecht, E., Schaum’s Outlines College Physic Ninth Edition, penerbit McGraw-Hill, 1997, Hal. 1 – 15.
Coomans, D., dan Massart, D., L., 1981. Alternative K-Nearest Neighbors Rules In Supervised Pattern Recognition. Analytica Chimica Acta, Vol. 136, Hal. 15-27, 1982.
Elgammal, A., 2014. Background Subtraction : Theory and Practice. Wide Area Surveillance, Vol. 6, Hal. 1– 121, September 2012.
Gokule, R., dan Kulkarni, A., 2014. Video Based Vehicle Speed Estimation And Stationary Vehicle Detection. International Journal of Advance Foundation and Research in Computer, Vol. 1, No. 11, Hal. 93-99 , 2014.
Joshi, P., Esciriva, D. M., dan Godoy, V., Opencv By Example, penerbit Packt Publishing Ltd, 2016, hal. 5-13.
Kaehler, D., dan Bradski, G., Learning OpenCV, penerbit O’Reilly Media Inc, 2008, hal. 9-11.
Nurhadiyatna, A., Hardjono, B., Wibisono, A., Sina, I., Jatmiko, W., Ma’sum, M., A., dan Mursanto, P., 2013. Improved Vehicle Speed Estimation Using Gaussian Mixture Model and Hole Filling Algorithm. 2013 IEEE International Conference Advanced Computer Science and Information System, Hal. 451456 , 2014.
OpenCV Developers Team. 2016. ABOUT, http://opencv.org/about.html( diakses 23 Juli 2016).
Piccardi, M., 2004. Background subtraction techniques : a review. 2004 IEEE International Conference on Systems, Man and Cybernatics, Vol. 4, Hal. 3099 – 3104, 2004.
Sadewo, S., S., Sumiharto, R., dan Candradewi, I., 2015. Sistem Pengukur Kecepatan Kendaraan Berbasis Video. 2015 Indonesian Journal of Electronics and Instrumentation System, Vol. 5, No. 2, Hal. 177 – 186, 2015.
Young, H., D., dan Freedman, R., A., University Physics With Modern Physics 13th edition, penerbit Addison-Wesley, 2011, hal. 10 – 93.
Zivkovic, Z., dan Heijden, F., V., D., 2004. Efficient adaptive density estimation per image pixel for task of background subtraction. Patter Recognition Letters,Vol. 25, Hal. 773 – 780, 2006.
Zivkovic, Z., 2004. Improved Adaptive Gaussian Mixture Model for Background Subtraction. Procedings of the 17th International Conference on Pattern Recognition, Vol. 2, Hal. 28 – 31, 2004
Refbacks
- There are currently no refbacks.
FAKULTAS SAINS DAN TEKNOLOGI
UIN SUSKA RIAU
Kampus Raja Ali Haji
Gedung Fakultas Sains & Teknologi UIN Suska Riau
Jl.H.R.Soebrantas No.155 KM 18 Simpang Baru Panam, Pekanbaru 28293
Email: sntiki@uin-suska.ac.id