Implementasi Learning Vektor Quantization (LVQ) dalam Mengidentifikasi Citra Daging Babi dan Daging Sapi

Jasril Jasril, Meiky Surya Cahyana, Lestari Handayani, Elvia Budianita

Abstract


Widespread circulation of adulterated meat and based on the word of Allah which confirms the prohibition of pork to eat, it needs to be made of a system that can distinguish between beef and pork to avoid cheating merchants and keep halal meat we eat. This study makes a system for identifying the image of beef and pork and meat adulterated with the color feature extraction HSV (Hue, Saturation, Value) and texture feature extraction GLCM (Grey Level Co-occurent Matrix) using classification LVQ (Learning Vector Quantization). A result of image identification adulterated meat pig is considered as a pork class. Image data on the image of the study consisted of 107 primary and 13 secondary image. Identification testing conducted on the distribution of training data and test data are different. Accuracy of the highest success with an average of 94.81% on the distribution of the 80 training data and test data 20 and the accuracy of the lowest success with an average of 82.22% on the distribution of training data and test data 50 50 with Learning Rate of 0.01, 0.05, 0.09. More increase the distribution of training data and more decrease division of the test data, so more increase the accuracy of success in identifying the image.
Keywords: beef, GLCM, HSV, Learning Rate, LVQ, pork

Full Text:

PDF

References


Ahmad, Farid Hartono, Dwijanto, Zaenal Abidin. Implementasi Jaringan Syaraf Tiruan Backpropagation Sebagai Sistem Pengenalan Citra Daging Babi dan Citra Daging Sapi. Dipublikasikan pada UNNES Journal of Mathematics Tahun 2012.

Kiswanto. Identifikasi Citra untuk Mengidentifikasi Jenis Daging Sapi Dengan Menggunakan Transformasi Wavelet Haar. Tesis Magister Sistem Informasi Universitas Diponegoro. Semarang. 2012.

Iqbal, Abdullah, Fernando Mendoza, Da-Wen Sun. Classification of sliced pork and turkey ham Images based on image colour features. Agriculture and Food Science Center, University College Dublin. Ireland. 2010.

Listia, Refta dan Agus Harjoko. Klasifikasi Massa pada Citra Mammogram Berdasarkan Gray Level Cooccurence Matrix (GLCM). IJCCS, Vol.8, No.1, January 2014, pp. 59-68, ISSN:1978-1520. lmu Komputer FMIPA UGM. Yogyakarta. 2014.

Andri. Implementasi Segmentasi Citra dan Algoritma Learning Vector Quantization (LVQ) dalam Pengenalan Bentuk Botol. STMIK Mikroskil Medan. ISSN. 1412-0100. VOL 13, No. 2. 2012.

Harjunowibowo Dewanto. Perangkat Lunak Deteksi Uang Palsu Berbasis LVQ Memanfaatkan Ultraviolet. Pendidikan Fisiska FKIP Universitas Sebelas Maret. Semarang. 2010.

Difla, Safrina. Jaringan Syaraf Tiruan Learning Vector Quantization Untuk Aplikasi Pengenalan Tanda Tangan. Seminar Nasional Aplikasi Teknologi Informasi 2010 (SNATI 2010) ISSN: 1907-5022. Yogyakarta. 2010.

Jose M. Chaves-González, Miguel A. Vega-Rodríguez, Juan A. Gómez-Pulido Juan M. Sánchez-Pérez. Detecting skin in face recognition systems: A colour spaces study. Digital Signal Processing 20: p 806–823. 2010.

Soeparno. Ilmu dan Teknologi Daging. Gadjah Mada University Press. Yogyakarta. 2005.

Rakhmawati, Rizka Puji. Sistem Deteksi Bunga Menggunakan Nilai HSV dari Citra Mahkota Bunga. Universitas STIKBANK, Semarang. 2013.

Haralick, M. R. Shanmugam, K dan Distein, I. Textural Feature For Image Classification. IEEE.Vol.3, No.6. 1973.

Difla, Safrina. Jaringan Syaraf Tiruan Learning Vector Quantization Untuk Aplikasi Pengenalan Tanda Tangan. Seminar Nasional


Refbacks

  • There are currently no refbacks.


FAKULTAS SAINS DAN TEKNOLOGI
UIN SUSKA RIAU

Kampus Raja Ali Haji
Gedung Fakultas Sains & Teknologi UIN Suska Riau
Jl.H.R.Soebrantas No.155 KM 18 Simpang Baru Panam, Pekanbaru 28293
Email: sntiki@uin-suska.ac.id