Fuzzy Single Depot mTSP Model using Robust Ranking Technique for Handling Deposit Carrying Bank

Rahmawati Rahmawati, Fitriani Surayya Lubis, Riswan Efendi, Anneke De Resta

Abstract


Multiple Traveling Salesman Problem (mTSP) of assignment-based consists of two types, namely the single-depot and multi-depot. This study aims to develop a single-depot mTSP assignment-based model with  fuzzy travel cost form. The single-depot mTSP model above was formulated using an objective function with trapezoidal fuzzy-coefficient form. The fuzzy forms above were converted into crisp using the Robust Ranking Technique for getting an optimal solution. The developed model above was applied to handle deposit-carrying problem at Mandiri Bank with 20 branches in Pekanbaru, Riau Province, Indonesia. In this problem, the main objective is to minimize the total travel cost by bank’s salesmen from initial depot to all destination branches. The result indicated that the developed fuzzy single-depot mTSP model  is capable to determine the minimum total cost above into IDR 70,980.00 with m= 4 salesmen,the upper boundand the lower bound . This developed model could be considered and enhanced in handling deposing-carrying problem from another sectors.


Full Text:

PDF

References


I. Kara and T. Bektas, “Integer linear programming formulations of multiple salesman problems and its variations,” Eur. J. Oper. Res., vol. 174, no. 3, pp. 1449–1458, Nov. 2006, doi: 10.1016/j.ejor.2005.03.008.

H. Larki and M. Yousefikhoshbakht, “A r c h i v e o f S I D Solving the Multiple Traveling Salesman Problem by a Novel Meta-heuristic Algorithm.” [Online]. Available: www.SID.ir

F. Nuriyeva and G. Kizilates, “A NEW HEURISTIC ALGORITHM FOR MULTIPLE TRAVELING SALESMAN PROBLEM,” 2017.

Y. Kaempfer and L. Wolf, “Learning the Multiple Traveling Salesmen Problem with Permutation Invariant Pooling Networks,” Feb. 2019, [Online]. Available: http://arxiv.org/abs/1803.09621

J. K. Thenepalle and P. Singamsetty, “An open close multiple travelling salesman problem with single depot,” Decision Science Letters, vol. 8, no. 2, pp. 121–136, Apr. 2019, doi: 10.5267/j.dsl.2018.8.002.

R. Rahmawati, N. Hidayah, M. Soleh, and A. Suprianto, “Model dan Aplikasi Single Depot mTSP Berbasis Fuzzy untuk Efisiensi Deposit Carrying,” Jurnal Sains Matematika dan Statistika, vol. 11, no. 1, p. 88, Feb. 2025, doi: 10.24014/jsms.v11i1.35628.

P. Pandian and G. Natarajan, “A New Algorithm for Finding a Fuzzy Optimal Solution for Fuzzy Transportation Problems,” 2010.

S. Chandran and G. Kandaswamy, “A fuzzy approach to transport optimization problem,” Optimization and Engineering, vol. 17, no. 4, pp. 965–980, Dec. 2016, doi: 10.1007/s11081-012-9202-6.

A. P. Singh, “Global Journal of Technology and Optimization A Comparative Study of Centroid Ranking Method and Robust Ranking Technique in Fuzzy Assignment Problem,” 2021.

A. H. TAHA, Operation Research: An Introduction, Eight Editions, Pearson Education, Inc. United States of America., 2007.

S. T. Liu and C. Kao, “Network Flow Problems with Fuzzy Arc Lengths,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 34, no. 1, pp. 765–769, Feb. 2004, doi: 10.1109/TSMCB.2003.818560.

R. Munir, Buku Teks Ilmu Komputer Matematika Diskrit Edisi Kedua. Informatika Bandung, 2003.

D. Davendra, Traveling Salesman Problem: Theory and Applications. Intech, Croatia., 2010.

K. S. Bezalel Gavish, “An Optimal Solution Method for Large-Scale Multiple Traveling Salesman Problems,” Operation Researh, vol. 34, no. 5, pp. 689–717, 1986.

M. Desrochers and G. Laporte, “Improvements and extensions to the Miller-Tucker-Zemlin subtour elimination constraints,” 1991.

A. V Aho,’, M. R. Garey, and J. D. Ullman, “THE TRANSITIVE REDUCTION OF A DIRECTED GRAPH*,” 1972. [Online]. Available: http://www.siam.org/journals/ojsa.php




DOI: http://dx.doi.org/10.24014/jsms.v12i1.39038

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Jurnal JSMS

p-ISSN     : 2460-4542 (print)
e-ISSN     : 2615-8663 (online)
Alamat   : Program Studi Matematika
                   Fakultas Sains dan Teknologi, UIN Suska Riau
                   Jl. H.R Soebrantas, No. 155, Tampan, Pekanbaru.
Website : http://ejournal.uin-suska.ac.id/index.php/JSMS
e-mail    :
jsmsfst@uin-suska.ac.id

   

 

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.