Application of the Mamdani Fuzzy Inference System in Evaluating Traffic Accident Risk for Four-Wheeled Vehicles
Abstract
Traffic accidents involving four-wheeled vehicles constitute a complex problem influenced by multiple factors, including vehicle speed and traffic density. Accurate accident-risk assessment is essential to support preventive and control efforts on road networks. This study aims to design and implement an accident-risk evaluation model based on a Mamdani-type Fuzzy Inference System (FIS) to accommodate uncertainty in decision-making. The research procedure includes identifying input and output variables, constructing membership functions, fuzzification, formulating fuzzy rules, and performing inference and defuzzification. Testing results indicate that, for a combination of 80 km/h speed and 70 vehicles/km density, the centroid defuzzification method yields a risk value of 25.31%. This value falls within the low-to-moderate risk category. These findings suggest that the developed Mamdani FIS model is effective as a methodological approach for accident-risk evaluation.
Full Text:
PDFReferences
A. D. Saputra, “Studi Tingkat Kecelakaan Lalu Lintas Jalan di Indonesia Berdasarkan Data KNKT (Komite Nasional Keselamatan Transportasi) dari Tahun 2007-2016,” Warta Penelitian Perhubungan, vol. 29, no. 2, pp. 179–190, 2018.
G. U. Agbeboh and O. Osarumwense, “Empirical analysis of road traffic accidents: A case study of Kogi State, North-Central Nigeria,” International Journal of Physical Sciences, vol. 8, no. 40, pp. 1923–1933, 2013, doi: 10.5897/IJPS2013.3978.
S. F. E. Mubalus, “Analisis Faktor-Faktor Penyebab Kecelakaan Lalu Lintas Di Kabupaten Sorong Dan Penanggulangannya,” Soscied, vol. 6, no. 1, pp. 182–197, 2023.
R. Rahmadeni and S. Raudi, “Analisis Tingkat Kerugian Material Akibat Kecelakaan Lalu Lintas Dengan Menggunakan Dummy Variable Di Provinsi Riau Tahun 2013-2017,” Jurnal Sains Matematika dan Statistika, vol. 6, no. 1, p. 58, 2020, doi: 10.24014/jsms.v6i1.9253.
M. B. Santoso, “KEAMANAN MANUSIA: PERGESERAN PARADIGMA KEAMANAN NASIONAL (Studi Literatur Pada Kecelakaan Lalu Lintas Dalam Perspektif Kesejahteraan Sosial),” Share : Social Work Journal, vol. 13, no. 2, pp. 175–185, 2024, doi: 10.24198/share.v13i2.51546.
A. S. Mugirahayu, L. Linawati, and A. Setiawan, “Penentuan Status Kewaspadaan COVID-19 Pada Suatu Wilayah Menggunakan Metode Fuzzy Inference System (FIS) Mamdani,” Jurnal Sains dan Edukasi Sains, vol. 4, no. 1, pp. 28–39, 2021, doi: 10.24246/juses.v4i1p28-39.
Tomi Tamara, “SISTEM PENDUKUNG KEPUTUSAN DALAM SKEMA PENGUSULAN AWAL JABATAN FUNGSIONAL DOSEN MENGGUNAKAN SISTEM INFERENSI FUZZY TIPE MAMDANI (STUDI KASUS : DI BAGIAN. KEPEGAWAIAN – KOPERTIS WILAYAH X) Tomi,” Menara Ilmu, vol. XIII, no. 2, pp. 146–157, 2019, [Online]. Available: http://jurnal.umsb.ac.id/index.php/menarailmu/article/view/1189
S. Setianto, L. K. Men, B. M. Wibawa, and D. Hidayat, “Pengaturan Lampu Lalulintas Berbasis Fuzzy Logic,” JIIF (Jurnal Ilmu dan Inovasi Fisika), vol. 1, no. 2, pp. 94–98, 2017.
F. Andika, N. Nurviana, and R. P. Sari, “Perbandingan Model Chen dan Lee pada Metode Fuzzy Time Series untuk Peramalan Nilai Tukar Petani (NTP) di Provinsi Aceh,” Jurnal Sains Matematika dan Statistika, vol. 10, no. 1, p. 71, 2024, doi: 10.24014/jsms.v10i1.23463.
I. Wahyuni, W. F. Mahmudy, and A. Iriany, “Rainfall prediction in Tengger region Indonesia using Tsukamoto fuzzy inference system,” Proceedings - 2016 1st International Conference on Information Technology, Information Systems and Electrical Engineering, ICITISEE 2016, pp. 130–135, 2016, doi: 10.1109/ICITISEE.2016.7803061.
MZ Haqqul Barir, “Analisa Permodelan Penjadwalan Yang Optimal Dengan Logika Fuzzy Mamdani-Algoritma Genetika Dan Logika Fuzzy Sugeno-Algoritma Genetika Thesis Oleh : Much . Zuyyinal Haqqul Barir,” 2024.
B. A. RESTUPUTRI, “OPTIMASI FUNGSI KEANGGOTAAN FUZZY TSUKAMOTO DUA TAHAP MENGGUNAKAN ALGORITMA GENETIKA PADA PEMILIHAN CALON PENERIMA BEASISWA-PPA DAN BBP-PPA,” Malang.
A. Burhanuddin, “Analisis Komparatif Inferensi Fuzzy Tsukamoto, mamdani dan Sugeno Terhadap Produktivitas Padi di Indonesia,” Journal Informatic and Informtion Technology, vol. 2, no. 1, pp. 49–57, 2023.
P. Harliana, M. Mardiana, and Y. A. Nainggolan, “Analisa Perbandingan Tingkat Akurasi dalam Memprediksi Laju Inflasi Kota Medan Menggunakan Model Fuzzy Inference System Sugeno dan Mamdani,” Hello World Jurnal Ilmu Komputer, vol. 1, no. 3, pp. 145–52, 2022, doi: 10.56211/helloworld.v1i3.130.
D. A. Puryono, “Metode Fuzzy Inferensi System Mamdani Untuk Menentukan Bantuan Modal Usaha Bagi UMKM Ramah Lingkungan,” Jurnal STIMIKA, vol. 1, no. 1, pp. 1–6, 2014.
T. M. Purba and P. Gultom, “Analisis Perbandingan Fuzzy Inference System Metode Mamdani dan Sugeno dalam Optimisasi Produksi Barang,” INNOVATIVE: Journal Of Social Science Research, vol. 4, pp. 4076–4088, 2024.
DOI: http://dx.doi.org/10.24014/jsms.v12i1.38351
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Jurnal JSMS
p-ISSN : 2460-4542 (print)
e-ISSN : 2615-8663 (online)
Alamat : Program Studi Matematika
Fakultas Sains dan Teknologi, UIN Suska Riau
Jl. H.R Soebrantas, No. 155, Tampan, Pekanbaru.
Website : http://ejournal.uin-suska.ac.id/index.php/JSMS
e-mail : jsmsfst@uin-suska.ac.id

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.















