Analisis Model Mangsa-Pemangsa dengan Fungsi Respon Holling Tipe II dan Adanya Infeksi Penyakit pada Mangsa
Abstract
This research discusses the predator-prey model with the Holling Type II response function and the presence of disease in the prey population. It is assumed that the disease infection only spreads within the prey population and cannot be cured so there are three subpopulations in the model, namely susceptible prey, infected prey and predators. This research aims to construct a prey-prey model with a Holling Type II response function and the presence of disease infection in the prey population, analyze the stability of the model equilibrium point and interpret the model. Analysis of the stability of the equilibrium point begins with the linearization method, and then the type of stability is determined based on the characteristics of the eigenvalues using the Routh-Hurwitz criterion. The results of this research obtained 5 (five) equilibrium points, namely population extinction, vulnerable prey existing, extinction of infected prey, extinction of predators and existing population. The results of the equilibrium point analysis show that all equilibrium points are stable if they fulfill the specified conditions. Based on the numerical simulations carried out, the interpretation was obtained that if the parameter values of the interaction rate of susceptible prey and infected prey as well as the rate of death due to disease were changed, this could cause a change in the stability of the equilibrium point.
Full Text:
PDF (Bahasa Indonesia)References
R. Effendi, H. Salsabila, and A. Malik, “Pemahaman tentang lingkungan berkelanjutan, ”Abstract and Applied Analysis, vol. 18, no. 2, doi: 10.14710/md1.18.2.20218.75-82.
S. N. Afiyah, "Analisis Dinamik Model Predator-Prey Leslie-Gower dengan Fungsi Respon Holling Tipe II", Jurnal Ilmiah Teknologi Informasi Asia, vol. 9, no. 2, 2015, pp. 27–29.
S. Saadah, et al., "Model Interaksi Mangsa Pemangsa dengan Fungsi Respon Rasio Dependent Holling Tipe II dan Perilaku Anti Pemangsa", Mathunesa: Jurnal Ilmiah Matematika, vol. 7, no. 2, 2019.
P. Panja, S.K. Mondal and J. Chattopadhyay, “Dynamical Effects of Anti-Predator Behaviour of Adult Prey in a Predator-Prey Model with Ratio-Dependent Functional Response”, Asian Journal of Mathematics and Physics, vol.1, pp. 19–32, 2017.
S. G. Mortoja, P. Panja and S.K. Mondal, “Dynamics of a Predator-Prey Model with Stage Structure on Both Species and Anti-Predator Behavior”, Informatics in Medicine Unlocked, vol.10, pp. 50–57, 2018.
K. Mu'tamar and Zulkarnain, "Model Predator-Prey dengan Adanya Infeksi dan Pengobatan pada Populasi Prey". Jurnal Sains, Teknologi dan Industri, vol. 15, no. 1, pp. 1-6, 2017.
A. M. A. Siddik, S. Toaha, and A. M. Anwar, “Stability Analysis of Prey-Predator Model With Holling Type IV Functional Response and Infectious Predator", vol. 17, no. 2, pp. 155–165, 2021.
S. Maisaroh, Resmawan dan E. Rahmi, “Analisis Kestabilan Model Pemangsa-Mangsa dengan Infeksi Penyakit pada Mangsa dan Pemanenan Proporsional pada Pemangsa”, Jambura J. Biomath. vol. 1, pp. 8-15, 2020.
F. Ni'mah and D. Savitri, “Analisis Kestabilan Model Eko-epidemiologi dengan Fungsi Respon Holling Tipe I", vol. 10, no. 1, 2022, doi: https://doi.org/10.26740/mathunesa.v10n1.p1-12.
Miswanto, N. Suroiyah dan Windarto, "Model Predator Prey Leslie Gower dengan Respon Crowley Martin dan Prey Terinfeksi serta Faktor Ketakutan", Limits: Journal of Mathematics and Its Applications, vol. 20, no. 3, 2023, doi: http://dx.doi.org/10.12962/limits.v20i3.18530
G. E. Waldhani dan Chalimatusadiah, "Bifurkasi Hopf pada Model Dinamik S-I-P dengan Penyakit pada Populasi Prey dan Fungsi Respon Holling Type II dengan Pemanenan pada Prey", Jurnal Ilmiah Matematika, vol. 12, no. 03, 2024
N. L. Aufaniyah and Abadi, “Dynamics of Prey-Predator Interaction with Type II Holling Response Function, Additional Food, and Anti-Predator Behavior", vol. 11, no. 3, pp. 422–433, 2023, doi: https://doi.org/10.26740/mathunesa.v11n3.p422-433.
S. H. Arsyad, et al, “Analisis Model Pemangsa Mangsa Leslie-Gower dengan Pemberian Racun pada Pemangsa”, Jurnal Riset dan Aplikasi Matematika, vol. 4, no. 1, pp. 1-16, 2020.
A. Mufidah and D. Savitri, “Analisis Kestabilan Model Mangsa Pemangsa dengan Makanan Tambahan Pada Pemangsa Menggunakan Fungsi Respon Holling Tipe IV,” Jurnal Riset dan Aplikasi Matematika, vol. 07, no. 01, pp. 80–94, 2023.
F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, Springer – Verlag, New- York, USA, 1990.
L. Perko, Differential Equation and Dynamical System, New York, Springer-Verlag Berlin Heidelberg, 1991.
F. Gantmacher, The Theory of Matrices, Chelsea Publishing Company, 2020.
DOI: http://dx.doi.org/10.24014/jsms.v10i2.30041
Refbacks
- There are currently no refbacks.
Jurnal JSMS
p-ISSN : 2460-4542 (print)
e-ISSN : 2615-8663 (online)
Alamat : Program Studi Matematika
Fakultas Sains dan Teknologi, UIN Suska Riau
Jl. H.R Soebrantas, No. 155, Tampan, Pekanbaru.
Website : http://ejournal.uin-suska.ac.id/index.php/JSMS
e-mail : jsmsfst@uin-suska.ac.id