Pemodelan Generalized Space Time Autoregressive untuk Meramalkan Data Inflasi Bulanan di Provinsi Jawa Barat

Hikma Abdia, Tiara Annisa Akhsan, Anisa Kalondeng, Siswanto Siswanto

Abstract


Inflation is the decline in the value of money due to the continuous increase in the value of goods and services. Inflation is also an economic phenomenon that greatly affects people's daily lives and the economic stability of a country. To maintain price stability and economic growth, it is important to monitor and forecast the inflation rate. The Generalized Space Time Autoregressive (GSTAR) method is a method that is able to forecast inflation rates involving interrelationships between location and time. The data used in this study is inflation data for 7 cities in West Java, namely Bandung, Bekasi, Bogor, Cirebon, Depok, Sukabumi and Tasikmalaya in January 2018 to December 2022. This purpose of this study is to obtain the best GSTAR model and forecasting results based on inflation data in seven cities in West Java. Based on the research results, the GSTAR ( model, the MSE value and MAPE value of the 80:20 which is 0.12% and 12.20%, and the forecast results obtained for six cities relatively increased and one city experienced a decline. So that the best model for inflation data of seven cities in West Java is the GSTAR (model with uniform location location weights.


References


B. P. Statistik, “Indeks Harga Konsumen (IHK).” [Online]. Available: https://www.bps.go.id/subject/3/inflasi.html

M. Ingriela Toja Mario, R. Dwi Bekti, and J. Statistka, “Pemodelan Generalized Space Time Autoregressive (Gstar) Untuk Peramalan Tingkat Inflasi Di Pulau Jawa,” J. Stat. Ind. dan Komputasi, vol. 06, no. 02, pp. 171–184, 2021.

D. M. Putri, “Analisis Regresi Data Panel untuk Pemodelan Laju Inflasi Tujuh Kota di Provinsi Jawa Barat Tahun 2013-2020,” J. Biotropika, vol. 2(3), pp. 164–168, 2022.

A. Hartadi et al., “Musim inflasi di jawa barat dan penyebabnya,” vol. 15, no. 43, pp. 115–119, 2019.

A. Rahim, D. Retno Dwi Hastuti, D. Pradipta, N. Bustanul, and N. Azizah, “The Influence of Respondent Characteristics and Different Areas on Small-Scale Fisherman Household Income of Urban Coastal Areas in,” J. Socioecon. Dev., vol. 1, no. 2, pp. 63–71, 2018.

R. Handayani, S. Wahyuningsih, and D. Yuniarti, “Pemodelan Generalized Space Time Autoregressive (GSTAR) Pada Data Inflasi di Kota Samarinda dan Kota Balikpapan,” J. Eksponensial, vol. 9, no. 2, pp. 153–162, 2018.

Agnesya Risnandar and Anneke Iswani Achmad, “Pemodelan Generalized Space Time Autoregressive untuk Meramalkan Indeks Harga Konsumen,” J. Ris. Stat., pp. 43–50, 2023.

M. A. Masdin and D. Lusiyanti, “Peramalan Menggunakan Model Generalized Space Time Autoregressive ( GSTAR ) untuk Indeks Harga Konsumen di Empat Kota Provinsi Sulawesi Selatan,” vol. 14, no. 1, pp. 39–49, 2018.

M. Andini, “Peramalan curah hujan di dki jakarta dengan menggunaka metode generalized space time autoregressive integrated (gstar-i) jurnal ilmiah,” Peramalan curah hujan di dki jakarta dengan menggunaka Metod. Gen. Sp. time autoregressive Integr. J. Ilm., 2021.

S. Aufa, R. Santoso, and S. Suparti, “Pemodelan Indeks Harga Properti Residensial Di Indonesia Menggunakan Metode Generalized Space Time Autoregressive,” J. Gaussian, vol. 11, no. 1, pp. 31–44, 2022.

D. A. Kusumaningrum and S. P. Palupi, “Analisis Keterkaitan Data Inflasi Antara Provinsi DKI Jakarta dan Jawa Barat Tahun 2014-2021 Menggunakan Metode Vector Autoregressive (VAR),” Gov. Stat., vol. 1, no. 1, pp. 1–12, 2022.

V. P. Balqis, E. Kurniati, and O. Rohaeni, “Model Peramalan Data Inflasi dengan Metode Generalized Space Time Autoregressive (GSTAR) pada Tiga Kota di Jawa Barat,” Pros. Mat. Semin. Penelit. Sivitas Akad. Unisba, pp. 43–50, 2020.

N. F. Arini, N. M. Huda, and W. Andani, “Perbandingan Matriks Bobot Invers Jarak dan Bobot Seragam pada Model Gstar (1;1) untuk Data Indeks Harga Konsumen (Studi Kasus: Indeks Harga Konsumen di Kalimantan Barat),” Tensor Pure Appl. Math. J., vol. 4, no. 1, pp. 27–36, 2023.

E. Siswanto, H. Yasin, and S. Sudarno, “Pemodelan Generalized Space Time Autoregressive (Gstar) Seasonal Pada Data Curah Hujan Empat Kabupaten Di Provinsi Jawa Tengah,” J. Gaussian, vol. 8, no. 4, pp. 418–427, 2019.

S. S. R. Kharisma, “Implementasi Model Generalized Space Time Autoregressive (Gstar) Dalam Peramalan Data Harga Beras” 2022.




DOI: http://dx.doi.org/10.24014/jsms.v11i1.26998

Refbacks

  • There are currently no refbacks.


Jurnal JSMS

p-ISSN     : 2460-4542 (print)
e-ISSN     : 2615-8663 (online)
Alamat   : Program Studi Matematika
                   Fakultas Sains dan Teknologi, UIN Suska Riau
                   Jl. H.R Soebrantas, No. 155, Tampan, Pekanbaru.
Website : http://ejournal.uin-suska.ac.id/index.php/JSMS
e-mail    :
jsmsfst@uin-suska.ac.id