A RAG-Based Academic Information Chatbot Using Lightweight LLaMA and Indo-Sencence-BERT

Muhamad Saman, Gusti Ahmad Fanshuri Alfarisy, Rizky Amelia, Nisa Rizqiza Fadhliana

Abstract


In the current digital era, Institut Teknologi Kalimantan (ITK) encounters challenges in delivering academic information that is fast, accurate, and easily accessible to students, lecturers, and academic staff. Access to important information such as administrative procedures, report writing guidelines, and academic policies remains largely reliant on manual systems and static handbooks. To address this issue, this study investigates a chatbot system utilizing the Retrieval-Augmented Generation (RAG) framework through LLaMA model. The chatbot combines semantic retrieval and natural language generation to provide relevant and accurate answers based on existing academic documents. Evaluation was conducted on two lightweight LlaMA models: 1.5 and 3B parameters. Furthermore, different embedding vector also evaluated along with Indo-Sentence-BERT as well as the chunking size. The most optimal configuration was achieved using LLaMA 3B as the generative model and Indo-Sentence-BERT as the retriever, with a chunk size of 200 tokens and an overlap of 10 tokens. This setup achieved a RAGAS score of approximately 0.9, a competitive MRR of 0.5, and response latency under 1 second. Although LLaMA 1B recorded a higher MRR (0.6), its low RAGAS score made it less favorable. Overall, the LLaMA 3B and Indo-Sentence-BERT configuration is recommended to enhance the efficiency of academic information retrieval at ITK.

Keywords


Chatbot; Generation; Large Language Model; Natural Language Processing; Retrieval Augmented; Transformer

References


Lantana DA, Ningsih S, Waluyo T, Winarsih W, Rancang Bangun Chatbot Berbasis Rule-Based Sebagai Pusat Informasi Calon Mahasiswa Baru Di Universitas Nasional. J. Sist. Inf. Bisnis JUNSIBI. 2023; 4(1): 34-32. doi: 10.55122/junsibi.v4i1.695.

Ajiz MF, Ramadan MFS, Mutia HD, Yanuari PD, Pengembangan Aplikasi Chatbot Informasi Akademik Berbasis Web Menggunakan Metode Artificial Intelligence Markup Language (AIML). Media J. Inform. 2023; 15(2): 143-148. doi: 10.35194/mji.v15i2.3316.

Vaswani A et al., Attention Is All You Need, Dec. 05, 2017, arXiv: arXiv:1706.03762. Accessed: Sept. 19, 2022. [Online]. Available: http://arxiv.org/abs/1706.03762

Al-Amin M et al., History of generative Artificial Intelligence (AI) chatbots: past, present, and future development. Feb. 09, 2024, arXiv: arXiv:2402.05122. doi: 10.48550/arXiv.2402.05122.

Annepaka Y, Pakray P, Large language models: a survey of their development, capabilities, and applications. Knowl. Inf. Syst. 2025; 67(3): 2967–3022. doi: 10.1007/s10115-024-02310-4.

Minaee S et al., Large Language Models: A Survey., Feb. 20, 2024, arXiv: arXiv:2402.06196. Accessed: Oct. 30, 2024. [Online]. Available: http://arxiv.org/abs/2402.06196

Ji Z et al., Survey of Hallucination in Natural Language Generation. ACM Comput Surv. 2023; 55(12):248:1-248:38. doi: 10.1145/3571730.

Gao Yet al., Retrieval-Augmented Generation for Large Language Models: A Survey. 2024, arXiv: arXiv:2312.10997. doi: 10.48550/arXiv.2312.10997.

Lewis P et al., Retrieval-augmented generation for knowledge-intensive NLP tasks. in Proceedings of the 34th International Conference on Neural Information Processing Systems, in NIPS ’20. Red Hook, NY, USA: Curran Associates Inc., Dec. 2020, pp. 9459–9474.

Shalhan A, Implementasi Teknik Retrieval Augmented Generation Untuk Menghilangkan Halusinasi Pada Large Language Model Berbasis Vector Database. Universitas Multimedia Nusantara. [Online]. Available: https://kc.umn.ac.id/id/eprint/34785/

Neupane S et al., From Questions to Insightful Answers: Building an Informed Chatbot for University Resources. 2024, arXiv: arXiv:2405.08120. doi: 10.48550/arXiv.2405.08120.

Samudra G and Zy AT, Implementasi Retrieval Augmented Generation (RAG) Dalam Perancangan Chatbot Kesehatan Pencernaan. 2025; 8(1).

Li Z, Wang Z, Wang W, Hung K, Xie H, Wang FL, Retrieval-augmented generation for educational application: A systematic survey. Comput. Educ. Artif. Intell., 2025; 8:100417. doi: 10.1016/j.caeai.2025.100417.

Reimers N and Gurevych I, Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. in Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China: Association for Computational Linguistics, 2019, pp. 3980–3990. doi: 10.18653/v1/D19-1410.

LLaMA: Open and Efficient Foundation Language Models | Research - AI at Meta. Accessed: Nov. 14, 2025. [Online]. Available: https://ai.meta.com/research/publications/llama-open-and-efficient-foundation-language-models/

Sharma C, Retrieval-Augmented Generation: A Comprehensive Survey of Architectures, Enhancements, and Robustness Frontiers. 2025, arXiv: arXiv:2506.00054. doi: 10.48550/arXiv.2506.00054.

Karpukhin V et al., Dense Passage Retrieval for Open-Domain Question Answering. in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), B. Webber, T. Cohn, Y. He, and Y. Liu, Eds, Online: Association for Computational Linguistics, 2020; 6769–6781. doi: 10.18653/v1/2020.emnlp-main.550.

Gao T, Yao X, Chen D, SimCSE: Simple Contrastive Learning of Sentence Embeddings. in Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, M.-F. Moens, X. Huang, L. Specia, and S. W. Yih, Eds, Online and Punta Cana, Dominican Republic: Association for Computational Linguistics, 2021; 6894–6910. doi: 10.18653/v1/2021.emnlp-main.552.

Borgeaud S, Mensch A, Hoffmann J, Cai T, Rutherford E, Millican K, Improving Language Models by Retrieving from Trillions of Tokens.

Henderson M et al., Efficient Natural Language Response Suggestion for Smart Reply. 2017; arXiv: arXiv:1705.00652. doi: 10.48550/arXiv.1705.00652.

Yan Y, Li R, Wang S, Zhang F, Wu W, Xu W, ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer. in Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), C. Zong, F. Xia, W. Li, and R. Navigli, Eds, Online: Association for Computational Linguistics. 2021; 5065–5075. doi: 10.18653/v1/2021.acl-long.393.

Deode S, Gadre J, Kajale A, Joshi A, Joshi R, L3Cube-IndicSBERT: A simple approach for learning cross-lingual sentence representations using multilingual BERT. in Proceedings of the 37th Pacific Asia Conference on Language, Information and Computation, C.-R. Huang, Y. Harada, J.-B. Kim, S. Chen, Y.-Y. Hsu, E. Chersoni, P. A, W. H. Zeng, B. Peng, Y. Li, and J. Li, Eds, Hong Kong, China: Association for Computational Linguistics, Dec. 2023, pp. 154–163. Accessed: Nov. 14, 2025. [Online]. Available: https://aclanthology.org/2023.paclic-1.16/

Shelke A, Savant R, Joshi R, Towards Building Efficient Sentence BERT Models using Layer Pruning. in Proceedings of the 38th Pacific Asia Conference on Language, Information and Computation, N. Oco, S. N. Dita, A. M. Borlongan, and J.-B. Kim, Eds, Tokyo, Japan: Tokyo University of Foreign Studies. 2024; 720–725. Accessed: Nov. 14, 2025. [Online]. Available: https://aclanthology.org/2024.paclic-1.68/

Es S, James J, Espinosa-Anke L, Schockaert S, RAGAS: Automated Evaluation of Retrieval Augmented Generation. 2023; arXiv: arXiv:2309.15217. doi: 10.48550/arXiv.2309.15217.

Caragea C, Honavar V, Machine Learning in Computational Biology. in Encyclopedia of Database Systems, Springer, Boston, MA. 2009; 1663–1667. doi: 10.1007/978-0-387-39940-9_636.




DOI: http://dx.doi.org/10.24014/ijaidm.v8i3.38150

Refbacks

  • There are currently no refbacks.


Office and Secretariat:

Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau

Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942

Click Here for Information


Journal Indexing:

Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti  | SINTA | Dimensions | ICI Index Copernicus 

IJAIDM Stats