Big Data Analytics for Predicting Depression Risk in Generation Z: Integrating Self-Organizing Maps and Long Short-Term Memory

Joy Nasten Sinaga, Nuraina Nuraina, Frans Mikael Sinaga, Kelvin Kelvin, Nurhayati Nurhayati

Abstract


Mental health issues among Generation Z are rising, with depression being one of the most significant challenges. Leveraging the capabilities of big data analytics and artificial intelligence, this study proposes a hybrid method combining Self-Organizing Maps (SOM) and Long Short-Term Memory (LSTM) networks to predict depression risk based on behavioral data. The SOM algorithm is utilized for clustering high-dimensional input data to uncover hidden patterns, while the LSTM network is employed to capture sequential dependencies over time. Data were collected from various digital platforms, processed, and analyzed to train and validate the proposed model. Results show that the SOM-LSTM framework significantly improves the accuracy and reliability of early depression risk detection compared to conventional models. This study contributes a scalable and adaptable model for mental health prediction that can assist in timely interventions for Generation Z


Keywords


Big Data Analytics; Depression Risk Prediction; Generation Z; Long Short-Term Memory; Mental Health; Self-Organizing Maps

Full Text:

PDF

References


A. G. Reece and C. M. Danforth, “Instagram photos reveal predictive markers of depression,” EPJ Data Sci, vol. 6, no. 1, p. 15, Dec. 2017, doi: 10.1140/epjds/s13688-017-0110-z.

S. Chancellor, M. L. Birnbaum, E. D. Caine, V. M. B. Silenzio, and M. De Choudhury, “A Taxonomy of Ethical Tensions in Inferring Mental Health States from Social Media,” in Proceedings of the Conference on Fairness, Accountability, and Transparency, New York, NY, USA: ACM, Jan. 2019, pp. 79–88. doi: 10.1145/3287560.3287587.

W. Bin Tahir, S. Khalid, S. Almutairi, M. Abohashrh, S. A. Memon, and J. Khan, “Depression Detection in Social Media: A Comprehensive Review of Machine Learning and Deep Learning Techniques,” IEEE Access, vol. 13, pp. 12789–12818, 2025, doi: 10.1109/ACCESS.2025.3530862.

R. A. CALVO, D. N. MILNE, M. S. HUSSAIN, and H. CHRISTENSEN, “Natural language processing in mental health applications using non-clinical texts,” Nat Lang Eng, vol. 23, no. 5, pp. 649–685, Sep. 2017, doi: 10.1017/S1351324916000383.

A. Husseini Orabi, P. Buddhitha, M. Husseini Orabi, and D. Inkpen, “Deep Learning for Depression Detection of Twitter Users,” in Proceedings of the Fifth Workshop on Computational Linguistics and Clinical Psychology: From Keyboard to Clinic, Stroudsburg, PA, USA: Association for Computational Linguistics, 2018, pp. 88–97. doi: 10.18653/v1/W18-0609.

G. Shen et al., “Depression Detection via Harvesting Social Media: A Multimodal Dictionary Learning Solution,” in Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, California: International Joint Conferences on Artificial Intelligence Organization, Aug. 2017, pp. 3838–3844. doi: 10.24963/ijcai.2017/536.

A. Williams, “Twenge, J. M. (2017). iGen: Why Today’s Super‐Connected Kids Are Growing Up Less Rebellious, More Tolerant, Less Happy and Completely Unprepared for Adulthood. New York, NY: Atria. ISBN: 978‐1‐5011‐5201‐6 paperback. 342 pp.,” Fam Consum Sci Res J, vol. 48, no. 3, pp. 290–293, Mar. 2020, doi: 10.1111/fcsr.12345.

A. Turner, “Generation Z: Technology and Social Interest,” The Journal of Individual Psychology, vol. 71, no. 2, pp. 103–113, Jun. 2015, doi: 10.1353/jip.2015.0021.

Michele Parmelee, “Deloitte’s 2023 Gen Z and Millennial Survey reveals workplace progress despite new setbacks,” www.deloitte.com.

Grace Huckins, “An AI Used Facebook Data to Predict Mental Illness,” https://www.wired.com/.

T. Kohonen, Self-Organizing Maps, vol. 30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. doi: 10.1007/978-3-642-56927-2.

D. Muzafar, F. Y. Khan, and M. Qayoom, “Machine Learning Algorithms for Depression Detection and Their Comparison,” Jan. 2023.

M. Kerasiotis, L. Ilias, and D. Askounis, “Depression detection in social media posts using transformer-based models and auxiliary features,” Soc Netw Anal Min, vol. 14, no. 1, p. 196, Sep. 2024, doi: 10.1007/s13278-024-01360-4.

T. Kohonen, Self-Organizing Maps, vol. 30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. doi: 10.1007/978-3-642-56927-2.

J. Tervonen et al., “Personalized mental stress detection with self-organizing map: From laboratory to the field,” Comput Biol Med, vol. 124, p. 103935, Sep. 2020, doi: 10.1016/j.compbiomed.2020.103935.

D. Muzafar, F. Y. Khan, and M. Qayoom, “Machine Learning Algorithms for Depression Detection and Their Comparison,” Jan. 2023.

M. Savadkoohi, T. Oladunni, and L. A. Thompson, “Deep Neural Networks for Human’s Fall-risk Prediction using Force-Plate Time Series Signal,” May 21, 2021. doi: 10.1101/2021.05.19.21257466.

P. Gopika, “Depression Prediction Using LSTM and SVM,” International Research Journal of Innovations in Engineering and Technology (IRJIET), vol. 8, no. 2, pp. 128–132, 2024, doi: 10.47001/IRJIET/2024.802018.

A. Safayari and H. Bolhasani, “Depression Diagnosis by Deep Learning Using EEG Signals: A Systematic Review,” Nov. 2021, doi: 10.20944/preprints202107.0028.v2.

M. Kanahuati-Ceballos and L. J. Valdivia, “Detection of depressive comments on social media using RNN, LSTM, and random forest: comparison and optimization,” Soc Netw Anal Min, vol. 14, no. 1, p. 44, Feb. 2024, doi: 10.1007/s13278-024-01206-z.

X. Lan, Y. Cheng, L. Sheng, C. Gao, and Y. Li, “Depression Detection on Social Media with Large Language Models,” Mar. 2024.




DOI: http://dx.doi.org/10.24014/ijaidm.v8i3.38011

Refbacks

  • There are currently no refbacks.


Office and Secretariat:

Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau

Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942

Click Here for Information


Journal Indexing:

Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti  | SINTA | Dimensions | ICI Index Copernicus 

IJAIDM Stats