ADDITIONAL MENU
Sentiment Analysis of BCA Mobile App Reviews Using K-Nearest Neighbour and Support Vector Machine Algorithm
Abstract
The rapid evolution of digital technology has significantly transformed the financial services landscape, especially in the realm of mobile banking. BCA Mobile stands among the most popular apps for digital banking in Indonesia. Despite its widespread adoption, user reviews reflect diverse viewpoints and sentiments about the app. The objective of this research is to examine the user sentiments regarding the BCA Mobile app, based on reviews sourced from the Google Play Store and App Store. Two classification models, namely Support Vector Machine (SVM) and K-Nearest Neighbour (K-NN), are used in the analysis process. The collected review data undergoes several pre-processing stages and is labeled automatically using a Lexicon-Based technique. For feature weighting, the TF-IDF (Term Frequency-Inverse Document Frequency) approach is used.. Sentiment classification is then carried out using both K-NN and SVM, with performance evaluated through a matrix of confusion based on measurements like F1-score, recall, accuracy, and precision. The findings show that the SVM algorithm outperforms K-NN in terms of performance, with an accuracy of 94%, while K-NN achieves an accuracy of 82%. This study offers valuable insights for BCA management in understanding user sentiment and enhancing service quality through the application of artificial intelligence
Keywords
BCA Mobile; K-Nearest Neighbour; Lexicon-Based; Machine Learning; Sentiment Analysis; Support Vector Machine
References
Zahrotul Hayat and Syamsul Hidayat, "Analisis Kepuasan Pelayanan Penggunaan Mobile Banking BCA," Jurnal Manajemen Riset Inovasi, vol. 2, no. 2, pp. 261–268, Jan. 2024, doi: 10.55606/mri.v2i2.2541.
Symisius Lintang Ranataru and Nurvita Trianasari, "Analisis Sentimen Media Sosial Terhadap Aplikasi Perbankan Untuk Mengetahui Kepuasan Pengguna Aplikasi: Studi Kasus Pada Livin by Mandiri dan BCA Mobile," Al-Kharaj: Jurnal Ekonomi, Keuangan & Bisnis Syariah, vol. 6, no. 9, Sep. 2024, doi: 10.47467/alkharaj.v6i9.3805.
M. Gamma, A. Hakim, and F. Irwiensyah, "Analisis Sentimen Terhadap Ulasan Pengguna Pada Aplikasi BCA Mobile Menggunakan Metode Naïve Bayes," Journal of Information System Research, vol. 5, no. 4, 2024, doi: 10.47065/josh.v5i4.5343.
D. Munandar, M. Afdal, Z. Zarnelly, and R. Novita, “Analisis Sentimen Ulasan Pengguna Aplikasi Mobile Banking Menggunakan Algoritma K-Nearest Neighbor,” Jurnal Teknologi Sistem Informasi dan Aplikasi, vol. 7, no. 3, pp. 1309–1318, Jul. 2024, doi: 10.32493/jtsi.v7i3.41409.
N. K. Putri, A. V. Vitianingsih, S. Kacung, A. L. Maukar, and V. Yasin, "Sentiment Analysis of Brand Ambassador Influence on Product Buyer Interest Using KNN and SVM," Indonesian Journal of Artificial Intelligence and Data Mining, vol. 7, no. 2, p. 327, Apr. 2024, doi: 10.24014/ijaidm.v7i2.29469.
R. I. Putra Selian, A. V. Vitianingsih, S. Kacung, A. Lidya Maukar, and J. Febrian Rusdi, "Sentiment Analysis of Public Responses on Social Media to Satire Joke Using Naïve Bayes and KNN," sinkron, vol. 8, no. 3, pp. 1443–1451, Jul. 2024, doi: 10.33395/sinkron.v8i3.13721.
J. Muliawan and E. Dazki, "Sentiment Analysis Of Indonesia's Capital City Relocation Using Three Algorithms: Naïve Bayes, Knn, And Random Forest," Jurnal Teknik Informatika (JUTIF), vol. 4, no. 5, pp. 1227–1236, 2023, doi: 10.52436/1.jutif.2023.4.5.347.
S. L. Ranataru and N. Trianasari, "Analisis Sentimen Media Sosial Terhadap Aplikasi Perbankan Untuk Mengetahui Kepuasan Pengguna Aplikasi: Studi Kasus Pada Livin by Mandiri dan BCA Mobile," Al-Kharaj: Jurnal Ekonomi, Keuangan & Bisnis Syariah, vol. 6, no. 9, 2024, doi: 10.47467/alkharaj.v6i9.3805.
S. Rabbani, D. Safitri, N. Rahmadhani, A. A. F. Sani, and M. K. Anam, “Perbandingan Evaluasi Kernel SVM untuk Klasifikasi Sentimen dalam Analisis Kenaikan Harga BBM,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 3, no. 2, pp. 153–160, Oct. 2023, doi: 10.57152/malcom.v3i2.897.
D. Oktavia and Y. R. Ramadahan, "Analisis Sentimen Terhadap Penerapan Sistem E-Tilang Pada Media Sosial Twitter Menggunakan Algoritma Support Vector Machine (SVM)," Media Online, vol. 4, no. 1, pp. 407–417, 2023, doi: 10.30865/klik.v4i1.1040.
D. Nurmalasari, T. I. Hermanto, and I. M. Nugroho, “Perbandingan Algoritma SVM, KNN dan NBC Terhadap Analisis Sentimen Aplikasi Loan Service,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 7, no. 3, p. 1521, Jul. 2023, doi: 10.30865/mib.v7i3.6427.
E. Damayanti, A. V. Vitianingsih, S. Kacung, H. Suhartoyo, and A. Lidya Maukar, "Sentiment Analysis of Alfagift Application User Reviews Using Long Short-Term Memory (LSTM) and Support Vector Machine (SVM) Methods," Decode: Jurnal Pendidikan Teknologi Informasi, vol. 4, no. 2, pp. 509–521, Jun. 2024, doi: 10.51454/decode.v4i2.478.
A. Casini, D. Chelazzi, and P. Baglioni, "Advanced methodologies for the cleaning of works of art," Aug. 01, 2023, Science Press. Doi: 10.1007/s11431-022-2348-7.
S. Ramadhani, D. Azzahra, and T. Z, "Comparison of K-Means and K-Medoids Algorithms in Text Mining based on Davies Bouldin Index Testing for Classification of Student's Thesis," Digital Zone: Jurnal Teknologi Informasi dan Komunikasi, vol. 13, no. 1, pp. 24–33, May 2022, doi: 10.31849/digitalzone.v13i1.9292.
R. Fatmasari, N. Purnomo, S. A. Putra, W. Gata, and N. K. Wardhani, “Pengujian Pelabelan Otomatis Dataset Kualitas Pembelajaran Daring Universitas Terbuka Di Forum Dan Youtube,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 9, no. 3, pp. 1714–1724, Sep. 2024, doi: 10.29100/jipi.v9i3.5231.
C. Kumaresan and P. Thangaraju, "Sentiment Analysis in Multiple Languages: A Review of Current Approaches and Challenges," REST Journal on Data Analytics and Artificial Intelligence, vol. 2, no. 1, pp. 8–15, Mar. 2023, doi: 10.46632/jdaai/2/1/2.
K. Kiazad, S. L. D. Restubog, P. W. Hom, A. Capezio, B. Holtom, and T. Lee, "STEMming the tide: New perspectives on careers and turnover," J Organ Behav, vol. 45, no. 3, pp. 335–343, Mar. 2024, doi: 10.1002/job 2780.
Y. Asri, W. N. Suliyanti, D. Kuswardani, and M. Fajri, “Pelabelan Otomatis Lexicon Vader dan Klasifikasi Naive Bayes dalam menganalisis sentimen data ulasan PLN Mobile,” PETIR, vol. 15, no. 2, pp. 264–275, Nov. 2022, doi: 10.33322/petir.v15i2.1733.
D. Nurmalasari, T. I. Hermanto, and I. M. Nugroho, “Perbandingan Algoritma SVM, KNN dan NBC Terhadap Analisis Sentimen Aplikasi Loan Service,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 7, no. 3, p. 1521, 2023, doi: 10.30865/mib.v7i3.6427.
H. D. Abubakar and M. Umar, "Sentiment Classification: Review of Text Vectorization Methods: Bag of Words, Tf-Idf, Word2vec and Doc2vec," SLU Journal of Science and Technology, vol. 4, no. 1 & 2, pp. 27–33, Aug. 2022, doi: 10.56471/slujst.v4i.266.
D. Nurmalasari, T. I. Hermanto, and I. M. Nugroho, “Perbandingan Algoritma SVM, KNN dan NBC Terhadap Analisis Sentimen Aplikasi Loan Service,” JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 7, no. 3, p. 1521, Jul. 2023, doi: 10.30865/mib.v7i3.6427.
I. Alpian Novansyah and T. Suprapti, “Analisis Sentimen Pengguna Pada Aplikasi Lingokids Menggunakan Metode K-Nearest Neighbour,” 2023.
M. J. Palepa, N. Pratiwi, and R. Q. Rohmansa, “Analisis Sentimen Masyarakat Tentang Pengaruh Politik Identitas Pada Pemilu 2024 Terhadap Toleransi Beragama Menggunakan Metode K - Nearest Neighbor,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 9, no. 1, pp. 389–401, Feb. 2024, doi: 10.29100/jipi.v9i1.4957.
A. Witanti, B. Yogyakarta Jl Raya Wates-Jogjakarta, K. Sedayu, K. Bantul, and D. Istimewa Yogyakartalamat, “Analisis Sentimen Masyarakat Terhadap Vaksinasi Covid-19 Pada Media Sosial Twitter Menggunakan Algoritma Support Vector Machine (SVM),” Jurnal Sistem Informasi dan Informatika (Simika) P-ISSN, vol. 5, pp. 2622–6901, 2022.
T. T. Thet, J. C. Na, and C. S. G. Khoo, "Aspect-based sentiment analysis of movie reviews on discussion boards," J Inf Sci, vol. 36, no. 6, pp. 823–848, Dec. 2010, doi: 10.1177/0165551510388123.
D. Valero-Carreras, J. Alcaraz, and M. Landete, "Comparing two SVM models through different metrics based on the confusion matrix," Comput Oper Res, vol. 152, Apr. 2023, doi: 10.1016/j.cor.2022.106131.
DOI: http://dx.doi.org/10.24014/ijaidm.v8i2.37773
Refbacks
- There are currently no refbacks.
Office and Secretariat:
Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau
Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942
Journal Indexing:
Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti | SINTA | Dimensions | ICI Index Copernicus
IJAIDM Stats