ADDITIONAL MENU
Comparative Study: Performance Comparison of You Only Look Once and Convolutional Neural Networks Algorithms in Human Object Detection
Abstract
The evolution of object identification technologies, particularly for person detection applications, has increasingly accelerated due to the merger of deep learning and artificial intelligence with computer vision. This study intends to test the efficacy of two object detection algorithms, YOLOv8n and CNN MobileNetSSD, in identifying human objects in digital photos. A dataset of 12,334 human-labeled photos from the Roboflow platform was utilized to train the YOLOv8n model, while performance results for the CNN MobileNetSSD model were acquired from a prior article. The precision, recall, and F1-score of each model were examined. Experimental results reveal that YOLOv8n attains 94% precision, 92% recall, and a 92.9% F1-score, representing a considerable enhancement over MobileNetSSD. Conversely, MobileNetSSD got an F1-score of 85.2%, with a precision of 86.5% and a recall of 84.1%. The findings show that CNN MobileNetSSD is more ideal for non-time-sensitive or resource-limited scenarios; however, YOLOv8n is preferable for real-time human identification tasks due to its greater accuracy and faster inference. This comparative analysis is important for differentiating object detection models matched to certain application needs.
Keywords
Computer Vision; Human Detection; MobileNetSSD; Real-Time Detection; YOLOv8n
References
I. Nihayatul Husna, M. Ulum, A. Kurniawan Saputro, D. Tri Laksono, and D. Neipa Purnamasari, “Rancang Bangun Sistem Deteksi Dan Perhitungan Jumlah Orang Menggunakan Metode Convolutional Neural Network (CNN),” Seminar Nasional Fortei Regional, vol. 7.
A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal Speed and Accuracy of Object Detection,” Apr. 2020, [Online]. Available: http://arxiv.org/abs/2004.10934
Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “YOLOX: Exceeding YOLO Series in 2021,” 2021. [Online]. Available: https://github.com/ultralytics/yolov3
Y. Wang, H. Wang, and Z. Xin, “Efficient Detection Model of Steel Strip Surface Defects Based on YOLO-V7,” IEEE Access, vol. 10, pp. 133936–133944, 2022, doi: 10.1109/ACCESS.2022.3230894.
M. Hussain, “YOLO-v1 to YOLO-v8, the Rise of YOLO and Its Complementary Nature toward Digital Manufacturing and Industrial Defect Detection,” Jul. 01, 2023, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/machines11070677.
H. Herdianto, D. Nasution, H. Hafni, and S. Ramadhan, “Penerapan Deep Learning Yolo Untuk Deteksi Manusia,” 2024.
H. Herdianto, H. Hafni, D. Nasution, and S. Ramadhan, “Implementasi Metode Yolo pada Deteksi Objek Manusia,” METHOMIKA Jurnal Manajemen Informatika dan Komputerisasi Akuntansi, vol. 8, no. 2, pp. 234–240, Oct. 2024, doi: 10.46880/jmika.Vol8No2.pp234-240.
N. J. Hayati, D. Singasatia, M. R. Muttaqin, T. Informatika, S. Tinggi, and T. Wastukancana, “Object Tracking Menggunakan Algoritma You Only Look Once (YOLO)V8 Untuk Menghitung Kendaraan,” KOMPUTA : Jurnal Ilmiah Komputer dan Informatika, vol. 12, no. 2, 2023, [Online]. Available: https://universe.roboflow.com/
J. Justam, A. Malik, E. Erlita, D. Mangellak, and Y. Yuyun, “Perbandingan Kinerja YOLO vs Faster R-CNN untuk Deteksi & Estimasi Berat Ikan,” Jurnal Ilmiah Sistem Informasi dan Teknik Informatika (JISTI), vol. 7, no. 2, pp. 363–376, Oct. 2024, doi: 10.57093/jisti.v7i2.273.
T. Palwankar and K. Kothari, “Real Time Object Detection using SSD and MobileNet,” Int J Res Appl Sci Eng Technol, vol. 10, no. 3, pp. 831–834, Mar. 2022, doi: 10.22214/ijraset.2022.40755.
I. Inayatul Arifah, F. Nur Fajri, and G. Qorik Oktagalu Pratamasunu, “Deteksi Tangan Otomatis Pada Video Percakapan Bahasa Isyarat Indonesia Menggunakan Metode YOLO Dan CNN,” 2022. [Online]. Available: http://jurnal.polibatam.ac.id/index.php/JAIC
F. Habib Hawari, F. Fadillah, M. Rifqi Alviandi, and T. Arifin, “Klasifikasi Penyakit Padi Menggunakan Algoritma CNN (Convolutional Neural Network),” JURNAL RESPONSIF, vol. 4, no. 2, pp. 184–189, 2022, [Online]. Available: https://ejurnal.ars.ac.id/index.php/jti
N. Khairunisa, . C., and A. Jamaludin, “Analisis Perbandingan Algoritma CNN dan YOLO dalam Mengidentifikasi Kerusakan Jalan,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 12, no. 3, Aug. 2024, doi: 10.23960/jitet.v12i3.4434.
M. R. Dewanto, M. N. Farid, M. A. Rafdi Syah, A. A. Firdaus, and H. Arof, “YOLO vs. CNN Algorithms: A Comparative Study in Masked Face Recognition,” Scientific Journal of Informatics, vol. 11, no. 1, pp. 139–146, Feb. 2024, doi: 10.15294/sji.v11i1.48723.
Z. Su, “Comparative Analysis of CNN-Based Object Detection Models: Faster R-CNN, SSD, and YOLO,” 2025.
R. Muwardi, J. Mada, R. Permana, H. Gao, and M. Yunita, “Human Object Detection for Real-Time Camera using Mobilenet-SSD,” Journal of Integrated and Advanced Engineering (JIAE), vol. 3, no. 2, pp. 141–150, 2023, doi: 10.5162/jiae.v3i2.108.
M. Abdul Aziz, A. S. Rachman, I. Made, and B. Suksmadana, “Pengujian Deteksi Objek Manusia Menggunakan Jetson Nano Dengan Model Ssd Mobilenetv2,” Jurnal Informatika Teknologi dan Sains, 2024.
T. A. R. Shyaa and A. A. Hashim, “Enhancing real human detection and people counting using YOLOv8,” in BIO Web of Conferences, EDP Sciences, Apr. 2024. doi: 10.1051/bioconf/20249700061.
N. Ma Muriyah, J. H. Sim, and A. Yulianto, “Evaluating YOLOv5 and YOLOv8: Advancements in Human Detection,” Journal of Information Systems and Informatics, vol. 6, no. 4, pp. 2999–3015, Dec. 2024, doi: 10.51519/journalisi.v6i4.944.
A. Gallu, A. R. Himamunanto, and H. Budiati, “Pengenalan Emosi pada Citra wajah menggunakan Metode YOLO,” 2024.
M. Abdurahman Kamil and Y. Mitha Djaksana, “JIIC: Jurnal Intelek Insan Cendikia Perbandingan Algoritma Convolutional Neural Network (CNN) Dan Algoritma You Only Look Once (YOLO) Untuk Deteksi Wajah Comparison Of Convolutional Neural Network (CNN) Algorithm And You Only Look Once (YOLO) Algorithm For Facial Detection”, [Online]. Available: https://jicnusantara.com/index.php/jiic
A. A. Rasjid, B. Rahmat, and A. N. Sihananto, “Implementasi YOLOv8 Pada Robot Deteksi Objek,” Journal of Technology and System Information, vol. 1, no. 3, p. 9, Jul. 2024, doi: 10.47134/jtsi.v1i3.2969.
N. Dwi Grevika Drantantiyas et al., “Performasi Deteksi Jumlah Manusia Menggunakan YOLOv8,” 2023. [Online]. Available: https://universe.roboflow.com/csgo-head-detection/head-datasets
M. Vilar-Andreu, L. García, A.-J. Garcia-Sanchez, R. Asorey-Cacheda, and J. Garcia-Haro, “Enhancing Precision Agriculture Pest Control: A generalized Deep Learning Approach with YOLOv8-based Insect Detection,” 2023, doi: 10.1109/ACCESS.2023.0322000.
N. Wakhidah, T. Pungkasanti, A. Praba, and R. Pinem, “JEPIN (Jurnal Edukasi dan Penelitian Informatika) Deteksi Objek menggunakan Deep Learning untuk Mengetahui Tingkat Kerumunan Mahasiswa”.
L. Rahma, H. Syaputra, A. H. Mirza, and S. D. Purnamasari, “Objek Deteksi Makanan Khas Palembang Menggunakan Algoritma YOLO (You Only Look Once),” 2021.
I. Wayan Suartika E.P, A. Y. Wijaya, and R. Soelaiman, “Klasifikasi Citra Menggunakan Convolutional Neural Network (Cnn) pada Caltech 101”.
D. Permata Sari, M. Arya Cendekia Putra, and R. Kusumanto, “Implementasi Pengenalan Wajah Berbasis CNN Dan RFID Untuk Area Akses Aman Di Fasilitas Ruang Dosen Polsri Dengan Hosting Lokal”, doi: 10.5281/zenodo.13047545.
A. Reza Fahcruroji, M. Yunita Wijaya, and I. Fauziah, “Implementasi Algoritma CNN Mobilenet Untuk Klasifikasi Gambar Sampah Di Bank Sampah”.
C. Kalamani, R. Bhuvaneswaran, S. Dhanapal, and S. Rajkumar, “Animal and Violence Detection Using Artificial Neural Network.” [Online]. Available: www.ijmer.com
DOI: http://dx.doi.org/10.24014/ijaidm.v8i3.37676
Refbacks
- There are currently no refbacks.
Office and Secretariat:
Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau
Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942
Journal Indexing:
Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti | SINTA | Dimensions | ICI Index Copernicus
IJAIDM Stats










