Acne Skin Detection System Using You Only Look Once (YOLOV8) Based on Artificial Intelligence

Gally Sabara, Abdurrahman Abdurrahman, Dewi Permata Sari, Aprila Kurniawan

Abstract


Acne is one of the most common skin problems among teenagers and young adults, and early detection is essential to prevent progression and long-term skin damage. This study aims to develop a real-time acne detection system utilizing the YOLOv8 deep learning algorithm, integrated with a Raspberry Pi and webcam, and supported by Telegram-based notifications for user monitoring. The dataset comprises 4,092 annotated facial images representing three types of acne: papule, pustule, and nodule. Model training was conducted in Google Colab with appropriate hyperparameter adjustments. The evaluation results show that the model performs well in detecting papule and pustule acne types, with correct predictions of 258 and 222 samples, respectively, in the confusion matrix, although misclassification remains high for comedones and background classes. The Precision–Confidence Curve indicates that the model achieves a perfect precision score of 1.00 at a confidence threshold of 0.929, while the F1–Confidence Curve shows an optimal F1-score of 0.73 at a confidence level of 0.39, demonstrating the best balance between precision and recall. Real-time testing further confirms that the system can detect papules with high confidence (88%), but confidence levels for comedones (31%) and nodules (29%) remain low due to visual similarity and non-ideal lighting conditions. Overall, the results indicate that the YOLOv8-based system is capable of performing real-time acne detection with acceptable accuracy. However, further improvements in dataset diversity and annotation quality are required to enhance performance, particularly for comedone detection.

Keywords


Acne Detection; Image Procesing; Object Detection; Raspberry Pi; YOLOv8

Full Text:

PDF

References


E. Astiadewi, A. Rinaldi Dikananda, and D. Rohman, “Algoritma Yolov8 Untuk Meningkatkan Analisa Gambar Dalam Mendeteksi Jerawat,” Jurnal Informatika Teknologi dan Sains, vol. 7, no. 1, pp. 346–353, 2025.

K. Min, G.-H. Lee, and S.-W. Lee, “ACNet: Mask-Aware Attention with Dynamic Context Enhancement for Robust Acne Detection,” Dec. 2021, [Online]. Available: http://arxiv.org/abs/2105.14891

S. Sharmin et al., “A Hybrid CNN Framework DLI-Net for Acne Detection with XAI,” J Imaging, vol. 11, no. 4, Apr. 2025, doi: 10.3390/jimaging11040115.

C. Liao, L. Zhang, G. Zhang, C. Lu, and X. Zhang, “Partial Discharge Wideband Full-Band High-Gain Resonant Cavity UHF Sensor Research,” Sensors, vol. 23, no. 15, Aug. 2023, doi: 10.3390/s23156847.

E. Astiadewi, A. Rinaldi Dikananda, and D. Rohman, “Algoritma Yolov8 Untuk Meningkatkan Analisa Gambar Dalam Mendeteksi Jerawat,” Jurnal Informatika Teknologi dan Sains, vol. 7, no. 1, pp. 346–353, 2025.

K. Raya, B. Prihandoko, A. Rumapea, and M. Faishal Fawwaz, “Implementation of YOLOv8 in Object Recognition Systems for Public Area Security,” Ultimatics : Jurnal Teknik Informatika, vol. 17, no. 1, 2025.

C. Liao, L. Zhang, G. Zhang, C. Lu, and X. Zhang, “Partial Discharge Wideband Full-Band High-Gain Resonant Cavity UHF Sensor Research,” Sensors, vol. 23, no. 15, Aug. 2023, doi: 10.3390/s23156847.

X. Wei et al., “Towards Accurate Acne Detection via Decoupled Sequential Detection Head,” Jan. 2023, [Online]. Available: http://arxiv.org/abs/2301.12219

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection,” May 2016, [Online]. Available: http://arxiv.org/abs/1506.02640

M. Jenssen, P. Keevash, E. Long, and L. Yepremyan, “Distinct degrees in induced subgraphs,” Oct. 2019, [Online]. Available: http://arxiv.org/abs/1910.01361

X. Jiang, W. Liu, and B. Zheng, “Data descriptor: Complete genome sequencing of comamonas kerstersii 8943, a causative agent for peritonitis,” Sci Data, vol. 5, 2018, doi: 10.1038/sdata.2018.222.

V. D. Dhore, V. K. Sambhe, M. S. Khedkar, S. A. Khedkar, and S. C. Shrawne, “International Journal of Intelligent Systems And Applications In Engineering Performance Evaluation of YOLOv8 and Segment Anything Model for Auto Annotation of Crop and Weed Images in Pigeon Pea Production System.” [Online]. Available: www.ijisae.org

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection,” May 2016, [Online]. Available: http://arxiv.org/abs/1506.02640

S. Pinasty, R. Bagus, and F. Hakim, “Automatic Detection of Acne Types Using The YOLOv5 Method,” Indonesian Journal of Artificial Intelligence and Data Mining (IJAIDM), vol. 8, no. 1, pp. 236–248, 2025, doi: 10.24014/ijaidm.v8i1.35617.

Y. Tan, J. Song, and C. Chu, “Frontiers in Computing and Intelligent Systems Detection of Small Object based on Improved-YOLOv8”.

T. Zhao, H. Zhang, and J. Spoelstra, “A Computer Vision Application for Assessing Facial Acne Severity from Selfie Images.” [Online]. Available: https://youtu.be/7tqJsms0viI

C. Shorten and T. M. Khoshgoftaar, “A survey on Image Data Augmentation for Deep Learning,” J Big Data, vol. 6, no. 1, Dec. 2019, doi: 10.1186/s40537-019-0197-0.

J. W. Ball et al., “DAFTAR PUSTAKA.” [Online]. Available: http://etd.repository.ugm.ac.id/

P. Tschandl, C. Rosendahl, and H. Kittler, “Data descriptor: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions,” Sci Data, vol. 5, Aug. 2018, doi: 10.1038/sdata.2018.161.

G. A. A. -, Z. H. -, R. M. I. -, and A. S. -, “Implementasi Yolov8 Pada Sistem Deteksi Penyakit Ikan Mas Koki Menggunakan Raspberry Pi 5,” Jurnal Informatika dan Teknik Elektro Terapan, vol. 13, no. 3, Jul. 2025, doi: 10.23960/jitet.v13i3.6770.

Z. An, X. Xu, L. Fan, C. Yang, and J. Xu, “Investigation of electrochemical performance and gas swelling behavior on li4ti5o12/activated carbon lithium‐ion capacitor with acetonitrile‐based and ester‐based electrolytes,” Electronics (Switzerland), vol. 10, no. 21, Nov. 2021, doi: 10.3390/electronics10212623.

K. Oksuz, B. C. Cam, E. Akbas, and S. Kalkan, “Localization Recall Precision (LRP): A New Performance Metric for Object Detection,” Jul. 2018, [Online]. Available: http://arxiv.org/abs/1807.01696

S. Wenkel, K. Alhazmi, T. Liiv, S. Alrshoud, and M. Simon, “Confidence score: The forgotten dimension of object detection performance evaluation,” Sensors, vol. 21, no. 13, Jul. 2021, doi: 10.3390/s21134350.

A. Martínez-Rodrigo, B. García-Martínez, Á. Huerta, and R. Alcaraz, “Detection of negative stress through spectral features of electroencephalographic recordings and a convolutional neural network,” Sensors, vol. 21, no. 9, May 2021, doi: 10.3390/s21093050.

M. S. Rana, A. Nibali, and Z. He, “Selection of object detections using overlap map predictions,” Neural Comput Appl, vol. 34, no. 21, pp. 18611–18627, Nov. 2022, doi: 10.1007/s00521-022-07469-x.

X. Wei et al., “Towards Accurate Acne Detection via Decoupled Sequential Detection Head,” Jan. 2023, [Online]. Available: http://arxiv.org/abs/2301.12219

R. Artikel, “Deteksi dan Klasifikasi Tingkat Keparahan Jerawat: Perbandingan Metode You Only Look Once,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 10, pp. 2443–2229, doi: 10.28932/jutisi.v10i3.9414.

N. Gao et al., “Evaluation of an acne lesion detection and severity grading model for Chinese population in online and offline healthcare scenarios,” Sci Rep, vol. 15, no. 1, Dec. 2025, doi: 10.1038/s41598-024-84670-z.

E. Astiadewi, A. Rinaldi Dikananda, and D. Rohman, “Algoritma Yolov8 Untuk Meningkatkan Analisa Gambar Dalam Mendeteksi Jerawat,” Jurnal Informatika Teknologi dan Sains, vol. 7, no. 1, pp. 346–353, 2025.




DOI: http://dx.doi.org/10.24014/ijaidm.v8i2.37217

Refbacks

  • There are currently no refbacks.


Office and Secretariat:

Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau

Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942

Click Here for Information


Journal Indexing:

Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti  | SINTA | Dimensions | ICI Index Copernicus 

IJAIDM Stats