Development of a Raspberry Pi 4-Powered Internet of Things System for Acne-Prone Skin Health Monitoring

Aprila Kurniawan, Dewi Permata Sari, Yudi Wijanarko, Gally Sabara

Abstract


This research developed an Internet of Things (IoT)-based facial skin health monitoring system, with a focus on acne-prone skin. Facial skin is categorized into three main types: normal, oily, and dry, as well as four types of acne: blackheads, papules, pustules, and nodules. The system is designed to enhance the accuracy of skin condition monitoring through facial image analysis, utilizing a dataset of 4,092 images. The high number of acne cases, especially in 12-24 year olds with 40-50 million cases in the United States, is the background of this research. Conventional skin analyzers are considered less capable of providing accurate quantitative data. Therefore, a Smart Skin Analyzer Detector was developed that uses a Raspberry Pi as a data processor. Images are taken through a webcam, analyzed, and then the results are sent to the cloud. The system is also integrated with Telegram to provide users with real-time notifications regarding their skin type and acne condition. This approach enables more effective, faster, and more affordable skin monitoring. The results demonstrate that IoT technology has significant potential in enhancing personalized and sustainable skin care.

Keywords


Acne Detection; Internet Of Things; Object Detection; Raspberry Pi; YOLOv8

Full Text:

PDF

References


D. A. Agustina, “Klasifikasi Citra Jenis Kulit Wajah Dengan CNN ResNet-50,” Jurnal Riset Sistem Informasi., 2024.

E. P. Claire, K. S., & Lake, “Acne and Its Variants in Special Populations. J Dermatol Nurses Assoc.,” 2018.

V. Marshalia, “Perancangan IoT untuk Sistem Monitoring Kulit Wajah. Jurnal Teknologi Informasi.,” 2023.

Y. Efendi, “IoT Sistem Pengendalian Lampu. Jurnal Ilmu Komputer.,” 2018.

F. et al. Sudana Putra, “Deteksi Otomatis Jerawat Menggunakan CNN. JIFotech,” 2021.

I. Arifianto, J., & Muhimmah, “Aplikasi Web Deteksi Jerawat.,” Journal Automata., 2021.

W. Meilita, B., & Yustanti, “YOLOv8 untuk Deteksi Penyakit Kulit Kucing,” J Teknol, 2024.

Yolo. Documentation., “Ultralytics,” 2023.

N. M. Farhan and B. Setiaji, “Indonesian Journal of Computer Science,” Indonesian Journal of Computer Science, vol. 12, no. 2, pp. 284–301, 2023.

A. Redmon, J., & Farhadi, “YOLOv3: An Incremental Improvement. arXiv.,” 2018.

H. Zhou, “Image Augmentation in Medical Datasets. Journal of Imaging.,” 2021.

T. Ho, “Real-Time Object Detection on Raspberry Pi. Sensors Journal.,” 2021.

M. Noor, “Teledermatology with AI and IoT. Journal of Health Informatics.,” 2023.

I. Virgiawan, F. Maulana, M. A. Putra, D. D. Kurnia, and E. Sinduningrum, “Deteksi dan tracking objek secara real-time berbasis computer vision menggunakan metode YOLO V3,” Jurnal Ilmiah Multidisiplin Indonesia, vol. 3, no. 3, pp. 42–52, 2024.

M. Helm and S. Kasus, “Implementasi Algoritma You Only Look Once (YOLOv8) untuk Mendeteksi Pelanggaran Lalu Lintas Berupa Tidak Menggunakan Helm,” vol. 5, no. 3, pp. 3237–3247, 2024.

J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,” 2018, [Online]. Available: http://arxiv.org/abs/1804.02767

M. Helm and S. Kasus, “Implementasi Algoritma You Only Look Once ( YOLOv8 ) untuk Mendeteksi Pelanggaran Lalu Lintas Berupa Tidak,” vol. 5, no. 3, pp. 3237–3247, 2024.

S. Pinasty, R. Bagus, F. Hakim, A. Info, F. S. Problems, and O. Detection, “Automatic Detection of Acne Types Using The YOLOv5 Method,” vol. 8, no. 1, pp. 236–248, 2025.

Y. Efendi, “Internet Of Things (Iot) Sistem Pengendalian Lampu Menggunakan Raspberry Pi Berbasis Mobile,” Jurnal Ilmiah Ilmu Komputer, vol. 4, no. 2, pp. 21–27, 2018, doi: 10.35329/jiik.v4i2.41.

I. Virgiawan, F. Maulana, M. A. Putra, D. D. Kurnia, and E. Sinduningrum, “Deteksi dan tracking objek secara real-time berbasis computer vision menggunakan metode YOLO V3,” Jurnal Ilmiah Multidisiplin Indonesia, vol. 3, no. 3, pp. 42–52, 2024, [Online]. Available: https://journal.ikopin.ac.id/index.php/humantech

S. et al. Pinasty, “Automatic Detection of Acne Using YOLOv5.,” IJCS., 2025.

T. Lin, “Focal Loss for Dense Object Detection,” IEEE ICCV, 2017.

M. Interface, “Raspberry Pi Monitor: Amazon.co.uk,” no. December, 2024, [Online]. Available: https://www.amazon.co.uk/slp/raspberry-pi-monitor/vgekepvtgz463jo

R. Tabrani and S. M. Ladjamudin, “Perancangan sistem pemantau keamanan menggunakan webcam berbasis aplikasi j2me (java 2 micro edition) secuity monitoring system design using webcam based application j2me (java 2 micro edition),” vol. 7, no. 1, 2018.

A. R. Wasril, M. S. Ghozali, and M. B. Mustafa, “Pembuatan Pendeteksi Obyek Dengan Metode You Only Look Once (Yolo) Untuk Automated Teller Machine (Atm),” Majalah Ilmiah UNIKOM, vol. 17, no. 1, pp. 69–76, 2019, doi: 10.34010/miu.v17i1.2240.

F. Xie, “Acne Classification Using CNNs,” Medical Imaging Research., 2020.

J. Kim, “Acne Grading Using Deep Learning,” Dermatology Research Journal, 2020.

Y. Jiang, “Edge Computing for Medical AI,” IEEE IoT Journal., 2020.

M. Noor, “Teledermatology with AI and IoT,” J Health Inform, 2023.

R. Patel, “IoT in Dermatology Applications,” Telemedicine Journal., 2020.




DOI: http://dx.doi.org/10.24014/ijaidm.v8i2.36997

Refbacks

  • There are currently no refbacks.


Office and Secretariat:

Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau

Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942

Click Here for Information


Journal Indexing:

Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti  | SINTA | Dimensions | ICI Index Copernicus 

IJAIDM Stats