ADDITIONAL MENU
Interactive Real-Time Weight Management Platform Using Machine Learning Methods
Abstract
This research develops an interactive and real-time web-based weight management platform that integrates machine learning methods using decision tree algorithms to detect the risk of weight-related diseases. The platform features an automatic Body Mass Index (BMI) calculator as well as a risk prediction system for diseases such as obesity and cardiovascular disorders. The data used includes the user's weight, height, eating habits, and physical activity level parameters collected through a live user interface. Based on the data, a decision tree algorithm is used to classify the health risk level and provide personalized recommendations to the user to help with preventive weight management. Initial testing showed that the decision tree model applied was able to achieve a prediction accuracy rate of 97%, demonstrating reliable performance in identifying health risks based on lifestyle data. This platform is expected to be an accessible technology solution to increase public awareness of the importance of weight management and disease prevention independently.
Keywords
BMI Calculator; Decision Tree; Disease Risk Detection; Interactive Platform; Machine Learning
References
S. Ghosh, S. Das, and S. Bandyopadhyay, “Machine learning-based prediction and classification of obesity,” Heal. Inf. Sci. Syst., vol. 9, no. 1, pp. 1–9, 2021, doi: 10.1007/s13755-021-00149-2.
D. E. Arterburn and others, “Long-term outcomes of bariatric surgery,” JAMA, vol. 326, no. 6, pp. 574–584, 2021, doi: 10.1001/jama.2021.10780.
T.-T. Nguyen, T. Nguyen, G. Nguyen, and others, “A comprehensive survey of AI applications in healthcare,” Healthc. Anal., vol. 1--2, p. 100009, 2021, doi: 10.1016/j.health.2021.100009.
A. S. Albahri, A. A. Zaidan, J. K. Alwan, and others, “Role of machine learning in obesity prediction: A systematic review,” Comput. Biol. Med., vol. 146, p. 105580, 2022, doi: 10.1016/j.compbiomed.2022.105580.
H. T. Rauf and others, “Time series forecasting of COVID-19 transmission and obesity impact using hybrid deep learning model,” Comput. Mater. & Contin., vol. 66, no. 3, pp. 2923–2939, 2021, doi: 10.32604/cmc.2021.014709.
H. Lee and others, “AI-powered weight management via mobile apps: A review,” JMIR AI, vol. 1, no. 1, p. e45673, 2023, doi: 10.2196/45673.
S. Wulandari and others, “AI adoption in nutrition and weight monitoring in Indonesia,” Health Informatics J., vol. 29, no. 1, p. 14604582231151264, 2023, doi: 10.1177/14604582231151265.
H. Lim, “How Samsung is using AI to help you sleep better.” 2024. [Online]. Available: https://www.marieclaire.com/beauty/artificial-intelligence-wellness-samsung/
Z. Zhang, Y. Wang, L. Zhang, Y. Wang, and Z. Zhang, “Body weight loss prediction using gradient boosting on real-world wearable data.” 2024. [Online]. Available: https://arxiv.org/abs/2409.08700
F. Massara, P. M. Di Gangi, and E. Raguseo, “Coaching Weight Loss via Text Messaging: SlimMe Chatbot Pilot Study,” Front. Nutr., 2022, [Online]. Available: https://www.frontiersin.org/articles/10.3389/fnut.2022.870775/full
B. V Srinivasan, S. Xu, and J. Sun, “Graph neural network powered digital health nudges for physical activity improvement at scale.” 2024. [Online]. Available: https://arxiv.org/abs/2401.10816
Wikipedia contributors, “HealthifyMe.” 2025.
D. Tsolakidis, L. P. Gymnopoulos, and K. Dimitropoulos, “Artificial intelligence and machine learning technologies for personalized nutrition: a review,” Informatics, vol. 11, no. 3, p. 62, 2024, doi: 10.3390/informatics11030062.
J. Hale and others, “Personalization in mHealth: Innovative informatics methods to improve health,” Methods Inf. Med., 2023.
K. Rahman, “MLOps-Driven Solutions for Real-Time Monitoring of Obesity and Its Impact on Heart Disease Risk: Enhancing Predictive Accuracy in Healthcare.” 2017.
A. Arefeen, S. Fessler, S. M. Mostafavi, C. S. Johnston, and H. Ghasemzadeh, “MealMeter: Using multimodal sensing and machine learning for automatically estimating nutrition intake.” 2025. [Online]. Available: https://arxiv.org/abs/2503.11683
O. Springer and others, “Obesity disease risk prediction using machine learning,” Pers. Ubiquitous Comput., 2023.
E. Sutrisno and L. Putri, “Sistem Prediksi BMI Berbasis Web dan Decision Tree: Visualisasi Alur Sistem Menggunakan Diagram Blok,” J. Sist. dan Inform., vol. 5, no. 4, pp. 197–210, 2022.
S. Rachmawati, A. Wijaya, and D. Hartono, “Pengembangan Aplikasi Web Prediksi BMI Berbasis CART dengan Pendekatan Diagram Blok,” J. Teknol. dan Sist. Inf., vol. 8, no. 1, pp. 12–24, 2021.
A. Hidayat and B. Nuryanto, “Implementasi C5.0 untuk Klasifikasi Obesitas pada Remaja Menggunakan Diagram Blok,” J. Khatulistiwa Inform., vol. 10, no. 2, pp. 45–56, 2023.
A. Wicaksono and M. Prasetya, “Prediksi Obesitas Menggunakan Support Vector Machine: Representasi Diagram Blok untuk Stakeholder Teknis,” J. Ilm. Teknol. Inf., vol. 9, no. 2, pp. 34–48, 2022.
Y. Saputra, R. Kusuma, and T. Darmawan, “Prediksi Fluktuasi Berat Badan Menggunakan XGBoost dan Deep Learning: Pendekatan Visualisasi dengan Diagram Blok,” Algoritm. J., vol. 7, no. 3, pp. 89–101, 2021.
DOI: http://dx.doi.org/10.24014/ijaidm.v8i2.36874
Refbacks
- There are currently no refbacks.
Office and Secretariat:
Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau
Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942
Journal Indexing:
Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti | SINTA | Dimensions | ICI Index Copernicus
IJAIDM Stats