ADDITIONAL MENU
Real-Time Access Control System with YOLOv11-Based Face and Blink Detection
Abstract
This study presents a real-time smart access control system that combines facial recognition with blink-based liveness detection to strengthen security and reduce spoofing risks. The main purpose is to provide a lightweight and efficient method that verifies both identity and physical presence in real time. The system employs two YOLOv11 models: one for detecting facial regions and another for distinguishing eye states through “open” and “closed” transitions. Identity verification is carried out by comparing facial embeddings using Euclidean distance. A private dataset was collected for facial images, while blink data was obtained from a public source, both annotated in YOLO format. After 100 epochs, the face detection model achieved 0.999 precision, 1.000 recall, 0.995 mAP50, and 0.868 mAP50–90, while the blink detection model recorded 0.959 precision, 0.962 recall, 0.967 mAP50, and 0.678 mAP50–90. These outcomes confirm that the objectives were achieved, demonstrating a practical and reliable biometric authentication solution with integrated liveness verification. The system also offers scalability for future multi-modal applications.
Keywords
Blink Detection; Face Recognition; Liveness Detection; Smart Access; YOLOv11
Full Text:
PDFReferences
S. M. Arman, T. Yang, S. Shahed, A. Al Mazroa, A. Attiah, and L. Mohaisen, “A Comprehensive survey for privacy-preserving biometrics: Recent approaches, challenges, and future directions,” Comput. Mater. Contin., vol. 78, no. 2, pp. 2087–2110, 2024, doi: 10.32604/cmc.2024.047870.
Y. Motwani, S. Seth, D. Dixit, A. Bagubali, and R. Rajesh, “Multifactor door locking systems: A review,” Elsevier, vol. 46, no. March, pp. 7973–7979, 2021, doi: 10.1016/j.matpr.2021.02.708.
R. M. Ibrahim, M. M. Elkelany, and M. I. El-Afifi, “Trends in Biometric Authentication: A review,” Nile J. Commun. Comput. Sci., vol. 6, no. December, pp. 1–12, 2023, [Online]. Available: https://njccs.journals.ekb.eg
A. I. Awad, A. Babu, E. Barka, and K. Shuaib, “AI-powered biometrics for Internet of Things security: A review and future vision,” J. Inf. Secur. Appl., vol. 82, no. March, p. 103748, 2024, doi: 10.1016/j.jisa.2024.103748.
H. Hadi, H. Radiles, R. Susanti, and M. Mulyono, “Human Face Identification Using Haar Cascade Classifier and LBPH Based on Lighting Intensity,” Indones. J. Artif. Intell. Data Min., vol. 5, no. 1, p. 13, 2022, doi: 10.24014/ijaidm.v5i1.15245.
F. M. Sarimole and A. E. Septianto, “Implementation of IoT-Based Facial Recognition for Home Security System Using Raspberry Pi and Mobile Application,” Int. J. Softw. Eng. Comput. Sci., vol. 4, no. 2, pp. 453–462, 2024, doi: 10.35870/ijsecs.v4i2.2554.
D. P. Sari, M. A. C. Putra, and R. Kusumanto, “Implementasi Pengenalan Wajah Berbasis Cnn Dan Rfid Untuk Area Akses Aman Di Fasilitas Ruang,” J. Teliska, vol. 18, no. Ii, pp. 23–31, 2024.
M. Beldi, “Face Recognition using Deep Learning and TensorFlow framework,” J. Comput. Sci. Inst., vol. 29, no. June, pp. 366–373, 2023.
V. Gaikwad, D. Rathi, V. Rahangdale, R. Pandita, K. Rahate, and R. S. Rajpurohit, “Design and Implementation of IOT Based Face Detection and Recognition,” Data Sci. Intell. Comput. Tech., pp. 923–933, 2024, doi: 10.56155/978-81-955020-2-8-78.
S. M. M, A. Geroge, A. N, and J. James, “Custom Face Recognition Using YOLO.V3,” 3rd Int. Conf. Signal Process. Commun., no. May, pp. 454–458, 2021.
M. Muhaimin and T. W. Sen, “Real-Time Detection of Face Masked and Face Shield Using YOLO Algorithm with Pre-Trained Model and Darknet,” Indones. J. Artif. Intell. Data Min., vol. 4, no. 2, pp. 97–107, 2021.
F. Majeed et al., “Investigating the efficiency of deep learning based security system in a real-time environment using YOLOv5,” Sustain. Energy Technol. Assessments, vol. 53, no. April 2023, 2022, doi: 10.1016/j.seta.2022.102603.
Y. Y. Pane et al., “Motorcycle License Plate and Driver Face Verification Using Siamese Neural Network Model,” vol. 8, no. 1, pp. 219–228, 2025.
G. Jocher and J. Qiu, “Ultralytics YOLO11,” 2024. https://docs.ultralytics.com/models/yolo11/
M. Basurah, W. Swastika, and O. H. Kelana, “Implementation Of Face Recognition And Liveness Detection System Using Tensorflow.JS,” JIP (Jurnal Inform. Polinema), pp. 509–516, 2023.
Y. Wei, I. K. D. Machica, C. E. Dumdumaya, J. C. T. Arroyo, and A. J. P. Delima, “Liveness Detection Based on Improved Convolutional Neural Network for Face Recognition Security,” Int. J. Emerg. Technol. Adv. Eng., vol. 12, no. 8, pp. 45–53, 2022, doi: 10.46338/ijetae0822_06.
C. Gao, X. Li, F. Zhou, and S. Mu, “Face liveness detection based on the improved CnN with context and texture information,” Chinese J. Electron., vol. 28, no. 6, pp. 1092–1098, 2019, doi: 10.1049/cje.2019.07.012.
A. F. Rasheed and M. Zarkoosh, “YOLOv11 Optimization for Efficient Resource Utilization,” 2024, [Online]. Available: http://arxiv.org/abs/2412.14790
A. T. Khan and S. M. Jensen, “LEAF-Net: A Unified Framework for Leaf Extraction and Analysis in Multi-Crop Phenotyping Using YOLOv11,” Agric., vol. 15, no. 2, pp. 0–10, 2025, doi: 10.3390/agriculture15020196.
L. Deng, Y. Tan, D. Zhao, and S. Liu, “Research on object detection in remote sensing images based on improved horizontal target detection algorithm,” Earth Sci. Informatics, vol. 18, no. 3, pp. 1–25, 2025, doi: 10.1007/s12145-025-01814-z.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 770–778, 2016, doi: 10.1109/CVPR.2016.90.
A. A. F. Poeloemgam, Hendrawan, E. Mulyana, and W. Hermawan, “Web-based Face Detection and Recognition using YOLO and Dlib,” Proceeding 2023 17th Int. Conf. Telecommun. Syst. Serv. Appl. TSSA 2023, pp. 1–6, 2023, doi: 10.1109/TSSA59948.2023.10366984.
D. Zhang, J. Li, and Z. Shan, “Implementation of Dlib deep learning face recognition technology,” Proc. - 2020 Int. Conf. Robot. Intell. Syst. ICRIS 2020, pp. 88–91, 2020, doi: 10.1109/ICRIS52159.2020.00030.
B. Pande, K. Padamwar, S. Bhattacharya, S. Roshan, and M. Bhamare, “A Review of Image Annotation Tools for Object Detection,” Proc. - Int. Conf. Appl. Artif. Intell. Comput. ICAAIC 2022, no. Icaaic, pp. 976–982, 2022, doi: 10.1109/ICAAIC53929.2022.9792665.
N. Passalis et al., “Leveraging Active Perception for Improving Embedding-based Deep Face Recognition,” 2021.
DOI: http://dx.doi.org/10.24014/ijaidm.v8i3.36812
Refbacks
- There are currently no refbacks.
Office and Secretariat:
Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau
Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942
Journal Indexing:
Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti | SINTA | Dimensions | ICI Index Copernicus
IJAIDM Stats










