ADDITIONAL MENU
Carbon Emission Trends (1999–2022): Forecasting Association of Southeast Asian Nations (ASEAN)'s Future Using a Hybrid Approach to Support Zero-Emission Policies
Abstract
Carbon Dioxide (CO₂) emissions are a primary driver of global climate change, with the energy sector being the dominant contributor. Southeast Asia, experiencing rapid economic growth, faces significant increases in CO₂ emissions due to high energy consumption. This study proposes a hybrid Autoregressive Integrated Moving Average (ARIMA)-XGBoost approach to predict CO₂ emissions in Association of Southeast Asian Nations (ASEAN) countries from 2023 to 2035, overcoming limitations of traditional linear models by combining machine learning (XGBoost) and time-series analysis ARIMA. Results demonstrate high accuracy (R² = 0.98) with the identification of key factors, including Gross Domestic Product (GDP), population, and total greenhouse gas (GHG) emissions. For instance, Indonesia's emissions are predicted to rise from 841.84 MtCO₂ (2023) to 2197.36 MtCO₂ (2035), while Brunei's emissions decrease from 10.86 MtCO₂ to 9.57 MtCO₂. Residual analysis and k-fold cross-validation confirm model robustness. These findings underscore the need for differentiated policies, such as renewable energy transitions in high-growth emission countries (Indonesia, Philippines) and regulatory strengthening in stable-trend nations (Brunei, Laos). The study provides methodological contributions to data-driven emission forecasting and evidence-based policy recommendations for the Association of Southeast Asian Nations (ASEAN) climate change mitigation.
Keywords
ARIMA; ASEAN; Carbon Dioxide Emissions; Climate Change; Mitigation Policy; XGBoost
Full Text:
PDFReferences
H. Duan, X. Chen, and X. Li, “Carbon dioxide emissions and the energy transition in Southeast Asia,” Energy Reports, vol. 10, pp. 45–55, 2024, doi: 10.1016/j.egyr.2024.01.017.
X. Bai, Y. Zhang, and Z. Li, “Modeling Carbon Dioxide (CO₂) emissions with Autoregressive Integrated Moving Average (ARIMA) and machine learning techniques: A comparison and application to Association of Southeast Asian Nations (ASEAN) countries,” Environ. Sci. Technol., vol. 57, no. 2, pp. 1125–1135, 2023, doi: 10.1021/es303496g.
I. Kurt, M. Ozturk, and I. Kaya, “Predicting Carbon Dioxide (CO₂) emissions in Turkey using XGBoost and Autoregressive Integrated Moving Average (ARIMA) models: A hybrid approach,” J. Clean. Prod., vol. 273, p. 122603, 2021, doi: 10.1016/j.jclepro.2020.122603.
R. Sharma, A. Gupta, and V. K. Patel, “Linear regression analysis of Carbon Dioxide (CO₂) emissions in India: Limitations and alternatives,” Environ. Sci. Pollut. Res., vol. 27, no. 15, pp. 18234–18245, 2020, doi: 10.1007/s11356-020-08345-8.
W. Liu, J. Wang, and K. Tanaka, “Univariate vs. multivariate approaches for Carbon Dioxide (CO₂) emission prediction in Southeast Asia,” J. Clean. Prod., vol. 231, pp. 1025–1035, 2019, doi: 10.1016/j.jclepro.2019.05.209.
P. Zhou, L. Zhang, and Y. Chen, “Time-series forecasting of Carbon Dioxide (CO₂) emissions in China using SAutoregressive Integrated Moving Average (ARIMA): The role of exogenous variables,” Energy, vol. 215, p. 119171, 2021, doi: 10.1016/j.energy.2020.119171.
M. N. Abdullah, F. Othman, and N. H. Othman, “Autoregressive Integrated Moving Average (ARIMA) with exogenous variables for Carbon Dioxide (CO₂) forecasting in Malaysia,” J. Clean. Prod., vol. 321, p. 128966, 2021, doi: 10.1016/j.jclepro.2021.128966.
L. Chen and H. Wang, “A hybrid Long Short-Term Memory (LSTM)-Autoregressive Integrated Moving Average (ARIMA) ensemble approach for Carbon Dioxide (CO₂) emission forecasting in East Asian countries,” J. Environ. Model. Assess., vol. 28, no. 3, pp. 445–462, 2023, doi: 10.1007/s10666-023-09876-x.
S. Kumar, P. Singh, and A. Sharma, “Support Vector Regression-Autoregressive Integrated Moving Average (ARIMA) hybrid model for Carbon Dioxide (CO₂) emission prediction in South Asian economies,” Environ. Sci. Pollut. Res., vol. 30, no. 12, pp. 34567–34582, 2023, doi: 10.1007/s11356-023-26789-4.
X. Liu and Y. Zhang, “Deep learning approach using Convolutional Neural Networks (CNN)-Long Short-Term Memory (LSTM) networks for Carbon Dioxide (CO₂) emission forecasting in developing economies,” Appl. Energy, vol. 342, p. 121158, 2023, doi: 10.1016/j.apenergy.2023.121158.
Y. Zhang and L. Wang, “Predicting Carbon Dioxide (CO₂) emissions with machine learning: A comparative study of XGBoost and Autoregressive Integrated Moving Average (ARIMA) models,” Sustain. Dev., vol. 31, no. 3, pp. 298–309, 2023, doi: 10.1002/sd.2365.
X. Li, J. Zhang, and Q. Wang, “Hybrid forecasting models for Carbon Dioxide (CO₂) emissions and energy consumption in China: An empirical analysis,” Renew. Sustain. Energy Rev., vol. 150, p. 111521, 2022, doi: 10.1016/j.rser.2021.111521.
X. Chen, W. Li, and K. Tanaka, “Interaction effects in Carbon Dioxide (CO₂) emission models: A case study of Southeast Asia,” Energy Econ., vol. 118, p. 106490, 2023, doi: 10.1016/j.eneco.2022.106490.
L. Zhang, Y. Wang, and H. Chen, “Predicting Carbon Dioxide (CO₂) emissions using machine learning: A hybrid Convolutional Neural Networks (CNN)-Long Short-Term Memory (LSTM) approach,” Environ. Model. Softw., vol. 134, p. 104892, 2020, doi: 10.1016/j.envsoft.2020.104892.
D. H. Wolpert, “Stacked Generalization,” Neural Networks, vol. 5, no. 2, pp. 241–259, 1992, doi: 10.1016/S0893-6080(05)80023-1.
Z.-H. Zhou, Ensemble Methods: Foundations and Algorithms. Boca Raton, FL: CRC Press, 2012. doi: 10.1201/b12207/ensemble-methods-zhi-hua-zhou.
S. Raschka, “Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning,” arXiv Prepr. arXiv1811.12808, 2018, [Online]. Available: https://arxiv.org/abs/1811.12808
T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, pp. 785–794. doi: 10.1145/2939672.2939785.
J. D. Hamilton, Time Series Analysis. Princeton: Princeton University Press, 1994.
R. H. Shumway and D. S. Stoffer, Time Series Analysis and Its Applications: With R Examples. Cham: Springer, 2017. doi: 10.1007/978-3-319-52452-8.
G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, Time Series Analysis: Forecasting and Control. Hoboken, NJ: Wiley, 2008. doi: 10.1002/9781118619193.
D. N. Gujarati and D. C. Porter, Basic Econometrics. Boston: McGraw-Hill, 2009.
R. J. Hyndman and G. Athanasopoulos, Forecasting: Principles and Practice. Australia: OTexts, 2021. [Online]. Available: https://otexts.com/fpp3/
G. P. Peters, J. C. Minx, C. L. Weber, and O. Edenhofer, “Growth in emission transfers via international trade from 1990 to 2008,” Proc. Natl. Acad. Sci., vol. 109, no. 21, pp. 8903–8908, 2012, doi: 10.1073/pnas.1006388108.
I. E. A. (IEA), “World Energy Outlook 2021,” OECD Publishing, Paris, 2021. doi: 10.1787/14fcb638-en.
M. Burke, S. M. Hsiang, and E. Miguel, “Global non-linear effect of temperature on economic production,” Nature, vol. 527, no. 7577, pp. 235–239, 2015, doi: 10.1038/nature15725.
B. Liddle, “Impact of population, age structure, and urbanization on carbon emissions/energy consumption,” Ecol. Econ., vol. 105, pp. 119–129, 2014, doi: 10.1016/j.ecolecon.2014.05.010.
IPCC, Climate Change 2021: The Physical Science Basis. Cambridge, UK: Cambridge University Press, 2021. doi: 10.1017/9781009157896.
I. E. A. (IEA), “Carbon Pricing and Clean Energy Transition in Southeast Asia,” OECD/IEA, Paris, 2023. [Online]. Available: https://www.iea.org/reports/carbon-pricing-and-clean-energy-transition-in-southeast-asia
K. C. Seto, S. J. Davis, R. B. Mitchell, E. C. Stokes, and G. C. Unruh, “Carbon lock-in through urban form,” Nat. Clim. Chang., vol. 6, no. 6, pp. 604–608, 2016, doi: 10.1038/nclimate2948.
U. N. E. P. (UNEP), “Thailand’s Climate Action and Policies Toward Carbon Neutrality,” 2021. [Online]. Available: https://www.unep.org
W. Bank, “Vietnam Climate Change and Green Growth Development Report,” 2021. [Online]. Available: https://documents.worldbank.org/en/publication/documents-reports/documentdetail/285171633074966748/vietnam-climate-change-and-green-growth-development-report
I. E. A. (IEA), “Energy Policy Review: Association of Southeast Asian Nations (ASEAN) 2023,” OECD/IEA, Paris, 2023. [Online]. Available: https://www.iea.org/reports/energy-policy-review-asean-2023
A. D. B. (ADB), “Southeast Asia’s Pathway to Carbon Neutrality,” ADB, Manila, 2023. [Online]. Available: https://www.adb.org/news/events/southeast-asia-development-symposium-2023
DOI: http://dx.doi.org/10.24014/ijaidm.v8i3.36685
Refbacks
- There are currently no refbacks.
Office and Secretariat:
Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau
Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942
Journal Indexing:
Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti | SINTA | Dimensions | ICI Index Copernicus
IJAIDM Stats










