Enhancing Product Recommendation Accuracy Using Bipartite Link Prediction and Long Short-Term Memory in Retail Industry

Ivan Michael Siregar, Firlie Resti Rosdiana

Abstract


As competition in the retail sector intensifies, the demand for accurate customer-product recommendation systems has grown. Traditional similarity-based approaches such as common neighbor, Jaccard, Adamic Adar, preferential attachment, and resource allocation have been widely adopted in many business applications. However, these methods often struggle with capturing complex purchasing behaviors, product heterogeneity, temporal demand variations, and scalability challenges. This study introduces a deep learning-based recommendation model that integrates bipartite link prediction networks with Long Short-Term Memory (LSTM) to improve predictive accuracy. The bipartite network represents customer-product interactions, while the LSTM model captures sequential purchasing patterns to forecast future transactions. Experimental evaluation on a real-world building materials retail dataset comprising 389,087 transactions demonstrates the effectiveness of the proposed approach, achieving a Precision of 0.8223, Recall of 0.8034, F1-score of 0.8128, NDCG of 0.8601, and overall prediction accuracy of 0.854. The results indicate that the proposed model significantly outperforms similarity-based techniques, offering a robust solution for enhancing recommendation performance in dynamic retail environments.


Keywords


Bipartite Link Prediction; Enhancing Product; Long Short-Term Memory; Recurrent Neural Networks

References


H. Zhang, J. Wu, H. Huang, and S. Wang, “A Survey on Recommender Systems Based on Graph Neural Networks,” IEEE Access, vol. 9, pp. 155791–155809, 2021. doi: 10.1109/ACCESS.2021.3129293.

Xue, H., Yang, L., Jiang, W., Wei, Y., Hu, Y., Lin, Y., 2021. Modeling Dynamic Heterogeneous Network for Link Prediction Using Hierarchical Attention with Temporal RNN. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 12457 LNAI, 282–298. https://doi.org/10.1007/978-3-030-67658-2_17

Cui, Q., Wu, S., Liu, Q., Zhong, W., Wang, L., 2020. MV-RNN: A Multi-View Recurrent Neural Network for Sequential Recommendation. IEEE Trans. Knowl. Data Eng. 32, 317–331. https://doi.org/10.1109/TKDE.2018.2881260

M. Sholeh, R. Y. Rachmawati, and E. Susanti, "Pemodelan Basis Data Graph dengan Neo4j (Studi Kasus: Basis Data Sistem Informasi Penjualan pada UMKM)," J. Teknol. Inf. dan Terap., vol. 7, pp. 25–32, 2020, doi: 10.25047/jtit.v7i1.129.

B. Susilo, Y. Setiawan, and Aryani, "Perancangan Sistem Rekomendasi Pemilihan Cinderamata Khas Bengkulu Berbasis E-Marketplace," J. Rekursif, vol. 7, pp. 70–76, 2019.

Xu, M., Liu, W., Xu, J., Xia, Y., Mao, J., Xu, C., Hu, S., Huang, D., 2022. Recurrent Neural Network Based Link Quality Prediction for Fluctuating Low Power Wireless Links. Sensors 22. https://doi.org/10.3390/s22031212

S. Saadah and P. E. Yunanto, "Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) Methods to Forecast Daily Turnover at BM Motor Ngawi," Indones. J. Artif. Intell. Data Min., vol. 7, no. 2, pp. 141–147, 2024.

L. Wu, P. Sun, Y. Fu, and X. He, “Graph Neural Networks in Recommender Systems: A Survey,” arXiv preprint arXiv:2012.00973, 2020.

A. Rath and S. R. Sahu, "Recurrent Neural Networks for Recommender Systems," Comput. Intell. Mach. Learn., vol. 1, no. 1, pp. 31–36, 2020, doi: 10.36647/ciml/01.01.a004.

I. D. Mienye, T. G. Swart, and G. Obaido, "Recurrent Neural Networks: A Comprehensive Review of Architectures, Variants, and Applications," Information, vol. 15, no. 9, p. 517, 2024, doi: 10.3390/info15090517.

Livathinos, N., Berrospi, C., Lysak, M., Kuropiatnyk, V., Nassar, A., Carvalho, A., Dolfi, M., Auer, C., Dinkla, K., Staar, P., 2021. Robust PDF Document Conversion Using Recurrent Neural Networks. 35th AAAI Conf. Artif. Intell. AAAI 2021 17A, 15137–15145. https://doi.org/10.1609/aaai.v35i17.17777

R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec, “Graph-based Recommendation in E-commerce: Methods and Applications,” in Proceedings of the 13th ACM Conference on Recommender Systems, 2018, pp. 538–539. doi: 10.1145/3298689.3347047.

N. R. Madjid, Y. Vitriani, E. Haerani, and F. Kurnia, "Sistem Rekomendasi Hotel di Provinsi Riau dengan Metode AHP dan SAW," KLIK Kaji. Ilm. Inform. dan Komput., vol. 3, no. 6, pp. 945–956, 2023, doi: 10.30865/klik.v3i6.931.

L. Pereira, T. Hanggari, C. Rini, and M. Sorong, "Pengaruh Lingkungan Eksternal dan Lingkungan Internal terhadap Kinerja UKM melalui Keunggulan Bersaing pada UKM di Kota Sorong," J. Ilm. Nas., vol. 4, no. 1, pp. 162–169, 2022.

H. Huang, Y. Fan, L. Li, J. Chen, and T. Zhou, "A Novel News Recommendation Model with Knowledge Enhancement and Stability," Eur. J. Artif. Intell., 2025, doi: 10.1177/30504554241301391.

R. van den Berg, T. N. Kipf, and M. Welling, “Graph Convolutional Matrix Completion,” arXiv preprint arXiv:1706.02263, 2017.

Xie, Y., Li, C., Yu, B., Zhang, C., Tang, Z., 2020. A Survey on Dynamic Network Embedding.

Cai, X., Shu, J., Al-Kali, M., 2019. Link Prediction Approach for Opportunistic Networks Based on Recurrent Neural Network. IEEE Access 7, 2017–2025. https://doi.org/10.1109/ACCESS.2018.2886360

Li, F.-F., Johnson, J., Yeung, S., 2018. Lecture 10: Recurrent Neural Networks.

Hamilton, W.L., 2003. Inductive Representation Learning on Large Graphs. Rev. Prat. du Froid du Cond. d’Air 59.

M. Muhajir and P. Canas, "Indonesian Inflation Forecasting with Recurrent Neural Network Long Short-Term Memory (RNN-LSTM)," J. Statistika dan Sains Data, vol. 4, no. 2, pp. 132–142, 2024.

Qandi, G.A., Rakhmawati, N.A., 2021. Implementasi Algoritma Link Prediction Untuk Mencari Kesamaan Antara Calon Legislatif Pemilihan Umum Indonesia 2019. J. SIMETRIS 12, 1–8.

Taiwo, R., Bello, I.T., Abdulai, S.F., Yussif, A.-M., Salami, B.A., Saka, A., Zayed, T., 2024. Generative AI in the Construction Industry: A State-of-the-art Analysis.

Sherstinsky, A., 2020. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network. Phys. D Nonlinear Phenom. 404, 1–43. https://doi.org/10.1016/j.physd.2019.132306

I. Maula, A. Tholib, and M. N. F. Hidayat, "Faktorisasi Matriks Menggunakan Stochastic Gradient Descent untuk Optimasi Sistem Rekomendasi Hotel," NJCA, vol. 9, no. 1, pp. 19–25, 2024.

X. Wang, X. He, M. Wang, F. Feng, and T.-S. Chua, “Neural Graph Collaborative Filtering,” in Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2019, pp. 165–174. doi: 10.1145/3331184.3331267.

Wang Tingwu, 2016. Why do we need Recurrent Neural Network? p. 41.

Wu, C., Wang, Y., Jia, T., 2023. Dynamic Link Prediction Using Graph Representation Learning with Enhanced Structure and Temporal Information. Proc. 2023 26th Int. Conf. Comput. Support. Coop. Work Des. CSCWD 2023 279–284. https://doi.org/10.1109/CSCWD57460.2023.10152711

Oktavia, C., Nurkholis, A., 2022. Artificial Intelligence Untuk Keberlangsungan Bidang Konstruksi. JUMATISI J. Mhs. Tek. Sipil 3, 244–249. https://doi.org/10.24127/jumatisi.v3i2.4114

Afifah, K.H., 2023. ANALISIS SWOT PADA TOKO TRADISIONAL BAHAN. UNIVERSITAS SEMARANG.

Yolanda, G., 2019. Analisis Strategi Bersaing UD Duta Keramik di Jember. J. Agora 7, 35–57.

Maretasari, L., 2024. ANALISIS LINGKUNGAN INTERNAL DAN EKSTERNAL PADA BIDANG USAHA DISTRIBUTOR BAHAN BANGUNAN ( Studi Kasus CV Mitra Karya Sukses ).

Liu, C., Han, Y., Xu, H., Yang, S., Wang, K., Su, Y., 2024. A Community Detection and Graph-Neural-Network-Based Link Prediction Approach for Scientific Literature. Mathematics 12, 1–20. https://doi.org/10.3390/math12030369

Badiati, N., Zulistiani, 2023. Peningkatan Daya Saing Toko Bangunan Sumber Rejeki Kabupaten Blitar Melalui Strategi Pemasaran Berbasis Analisis SWOT. J. Simki Econ. 6, 452–462.

Febriana Fatimah Putri1*, M.F., 2024. PERANCANGAN SISTEM REKOMENDASI SABUN CUCI MUKA MENGGUNAKAN ALGORITMA TOPSIS Hal. 1166-, 1166–1172.

Y. Ma, J. Tang, X. Wang, A. M. Jalali, J. Li, and D. Yin, “Streaming Recommender Systems,” in Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020, pp. 1369–1378. doi: 10.1145/3397271.3401114.

Teknologi, S.R., Chicaiza, J., Komputer, D.I., Técnica, U., Loja, P. De, 2021. Survei Komprehensif Grafik Pengetahuan Berbasis Sistem Rekomendasi: Teknologi, Pengembangan, dan Kontribusi.

Siregar, Ivan M., Pratama, D., Himawan, C., 2024. Penggunaan Jaccard Similarity Coefficient dalam Optimasi Proses Rekrutmen Karyawan Berbasis Profil dan Kompetensi. SINTECH (Science Inf. Technol. J. 7, 101–111. https://doi.org/10.31598/sintechjournal.v7i2.1617

R. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, “GNNExplainer: Generating Explanations for Graph Neural Networks,” in Advances in Neural Information Processing Systems, vol. 32, 2019.

J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun, “Graph Neural Networks: A Review of Methods and Applications,” AI Open, vol. 1, pp. 57–81, 2020. doi: 10.1016/j.aiopen.2021.01.001.

Q. Wu, X. He, H. Zhang, and T.-S. Chua, “Session-based Recommendation with Graph Neural Networks,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 346–353.

C. Fan, X. Ma, Q. Zhang, Y. Li, X. Xie, and D. Jin, “A Graph Neural Network Framework for Understanding Customer Behavior in E-commerce,” arXiv preprint arXiv:1905.12356, 2019.

R. Rossi, A. Rao, and N. Ahmed, “Temporal Graph Networks for Deep Learning on Dynamic Graphs,” arXiv preprint arXiv:2006.10637, 2020.

X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural Collaborative Filtering,” in Proceedings of the 26th International Conference on World Wide Web (WWW), 2017, pp. 173–182. doi: 10.1145/3038912.3052569.

M. Zhang and Y. Chen, "Link prediction based on graph neural networks," Advances in Neural Information Processing Systems, 2019, pp. 5165–5175.

M. Fan, P. Wang, Y. Huang, Q. He, and X. He, “Graph Neural Networks for Social Recommendation,” in Proceedings of the Web Conference 2019 (WWW), 2019, pp. 417–426. doi: 10.1145/3308558.3313416.

E. Choi, S. Biswal, B. Malin, J. Duke, W. Stewart, and J. Sun, “Generating Multi-label Discrete Patient Records using Generative Adversarial Networks,” in Machine Learning for Healthcare Conference, 2017, pp. 286–305.

J. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk, “Session-based Recommendations with Recurrent Neural Networks,” in Proceedings of the 4th International Conference on Learning Representations (ICLR), 2016.

M. Fan, J. Ma, P. Wang, Y. Huang, and X. He, “Learning to Recommend with Multiple Graphs,” in Proceedings of the 14th ACM Conference on Recommender Systems (RecSys), 2020, pp. 525–534. doi: 10.1145/3383313.3412234.

L. Wu, Y. Sun, Y. Fu, and X. He, “A Comprehensive Survey on Graph Neural Networks,” IEEE Transactions on Neural Networks and Learning Systems, early access, 2021. doi: 10.1109/TNNLS.2020.2978386.

B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: Online Learning of Social Representations,” in Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014, pp. 701–710. doi: 10.1145/2623330.2623732.




DOI: http://dx.doi.org/10.24014/ijaidm.v8i2.36052

Refbacks

  • There are currently no refbacks.


Office and Secretariat:

Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau

Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942

Click Here for Information


Journal Indexing:

Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti  | SINTA | Dimensions | ICI Index Copernicus 

IJAIDM Stats