ADDITIONAL MENU
Sentiment Analysis on Application X on the Use of Red Oil Using the Naïve Bayes Method
Abstract
Red oil, as an alternative to traditional cooking oil, has gained public attention through reviews on App X. However, questions arise about how public sentiment is towards red oil and how the Naïve Bayes algorithm can classify positive and negative sentiments. This study aims to analyze user sentiment towards red oil using the Naïve Bayes method. The dataset used consists of 1,200 comments collected through the scrapping technique in 2024. After going through the process of removing duplicate comments, the number of data becomes 1,189. Before running the Naïve Bayes algorithm, the data is divided into test data and training data, with 238 data as test data and 951 data as training data. The analysis process involves pre-processing stages such as text cleaning, tokenization, and normalization, followed by word weighting with the TF-IDF method. The Naïve Bayes algorithm is applied for the classification of positive and negative sentiments. The results showed that 1,147 comments were positive sentiment, while 42 comments were negative sentiment with a total accuracy of 88.66%, then precision of 95.41%, recall of 92.44% and F1- 93.91% and it was found that the sentiment comments on the use of red oil had a greater positive polarity than negative polarity. This analysis provides important insights for producers and stakeholders regarding public perception of red oil, which is useful for strategic decision making, such as improving product quality and marketing campaigns. This method is expected to be a reference for further studies in the field of text classification and natural language processing.
Keywords
Naive Bayes Algorithm; Red Oil; Sentiment Analysis; TF-IDF; X Social Media
Full Text:
PDFReferences
R. Y. Paramawidhita, R. A. Safitri, S. S. R. Ariyanti, and J. Anggraini, “Formulasi Lilin Aromaterapi dari Minyak Atsiri Kombinasi Jahe Merah (Zingiber officinale var. Rubrum) dan Batang Medang (Cinnamomum iners Reinw. ex Blume),” J. Ilmu Kefarmasian, vol. 4, no. 1, pp. 48–54, 2023, [Online]. Available: http://repository.umpalangkaraya.net/?p=show_detail&id=865
A. Azalia, T. P. Utomo, E. Suroso, S. Hidayati, and P. Yuliandari, “The distillation model of red ginger rssential oil based on clean production,” J. Trop. Upl. Resour., vol. 02, no. 02, pp. 238–249, 2020, doi: 10.36055/joseam.v2i1.19333
S. G. J. Silitonga, “Catatan Ekonomi dan Politik di Indonesia Tahun 2022,” J. Multidisiplin Indones., vol. 2, no. 1, pp. 133–150, 2023, doi: 10.58344/jmi.v2i1.152.
Kukuh Wijayanti and Qoniah Nur Wijayani, “Peranan Aplikasi Twitter Atau X Dalam Interaksi Komunikasi Guna Membantu Penyeimbangan Kesehatan Mental Pada Remaja Saat Ini,” J. Sains Student Res., vol. 2, no. 1, pp. 07–15, 2023, doi: 10.61722/jssr.v2i1.469.
Heliyanti Susana, “Penerapan Model Klasifikasi Metode Naive Bayes Terhadap Penggunaan Akses Internet,” J. Ris. Sist. Inf. dan Teknol. Inf., vol. 4, no. 1, pp. 1–8, 2022, doi: 10.52005/jursistekni.v4i1.96.
M. Muslimin and V. Lusiana, “Analisis Sentimen Terhadap Kenaikan Harga Bahan Pokok Menggunakan Metode Naive Bayes Classifier,” J. Media Inform. Budidarma, vol. 7, no. 3, pp. 1200–1209, 2023, doi: 10.30865/mib.v7i3.6418.
N. F. Zakaria, M. Wibowo, and N. A. Setya Nugraha, “Analisis Sentimen Terhadap Isu Resesi Tahun 2023 di Indonesia menggunakan Metode Naïve Bayes,” J. Media Inform. Budidarma, vol. 7, no. 3, p. 1171, 2023, doi: 10.30865/mib.v7i3.6386.
C. F. Hasri and D. Alita, “Penerapan Metode NaãVe Bayes Classifier Dan Support Vector Machine Pada Analisis Sentimen Terhadap Dampak Virus Corona Di Twitter,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 3, no. 2, pp. 145–160, 2022, doi: 10.33365/jatika.v3i2.2026.
S. Chandel, C. B. Clement, G. Serrato, and N. Sundaresan, “Training and Evaluating a Jupyter Notebook Data Science Assistant,” pp. 1–8, 2022, [Online]. Available: http://arxiv.org/abs/2201.12901
N. Veraniazzahra and R. Listiawati, “Pengaruh Perceived Usefulness, Perceived Credibility, dan Features Terhadap Minat Menggunakan Bank Digital SeaBank di Jabodetabek,” Semin. Nas. Akunt. dan Manaj., vol. 3, pp. 1–9, 2023, doi: 10.47686/bbm.v8i2.406
A. H. Lubis, “Islamophobia Sentiment Classification Using Support Vector Machine,” J. Intell. Comput. Heal. Informatics, vol. 3, no. 2, p. 47, 2023, doi: 10.26714/jichi.v3i2.11179.
M. S. Hasibuan, A. H. Lubis, and M. N. Sari, “Perbandingan algoritma clustering dbscan dan k-means dalam pengelompokan siswa terbaik Comparison of dbscan and k-means clustering algorithms in grouping the best students,” vol. 5, pp. 301–309, 2024, doi: 10.37373/infotech.v5i2.1457
Wijoyo A, Saputra A, Ristanti S, Sya’ban S, Amalia M, and Febriansyah R, “Pembelajaran Machine Learning,” OKTAL (Jurnal Ilmu Komput. dan Sci., vol. 3, no. 2, pp. 375–380, 2024, [Online]. Available: https://journal.mediapublikasi.id/index.php/oktal/article/view/2305
G. T. Santoso, “ANALISIS SENTIMEN PADA TWEET DENGAN TAGAR # BPJSRASARENTENIR MENGGUNAKAN METODE SUPPORT VECTORE MACHINE ( SVM ) UNIVERSITAS ISLAM RIAU Nama NPM Fakultas Program Studi Jenjang Pendidikan Judul Skripsi Gading Teguh Santoso Teknik Teknik Informatika Strata S,” 2021.
A. I. Tanggraeni and M. N. N. Sitokdana, “Analisis Sentimen Aplikasi E-Government pada Google Play Menggunakan Algoritma Naïve Bayes,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 2, pp. 785–795, 2022, doi: 10.35957/jatisi.v9i2.1835.
M. W. Prayuda and A. A. Permana, “Penerapan Metode Lexicon Based untuk Menganalisis Sentimen Terhadap Mudik Lebaran,” J. Minfo Polgan, vol. 11, no. 2, pp. 137–143, 2022, [Online]. Available: https://doi.org/10.33395/jmp.v11i2.12348
I. S. Tinendung and I. Zufria, “Pengelompokan Status Stunting Pada Anak Menggunakan Metode K-Means Clustering,” J. Media …, vol. 7, pp. 2014–2023, 2023, doi: 10.30865/mib.v7i4.6908.
M. S. Hasibuan and A. Serdano, “Analisis Sentimen Kebijakan Pembelajaran Tatap Muka Menggunakan Support Vector Machine dan Naive Bayes,” JRST (Jurnal Ris. Sains dan Teknol., vol. 6, no. 2, p. 199, 2022, doi: 10.30595/jrst.v6i2.15145.
E. Utami and A. C. Khotimah, “Comparison Naïve Bayes Classifier, K-Nearest Neighbor and Support Vector Machine in the Classification of Individual on Twitter Account,” J. Tek. Inform., vol. 3, no. 3, 2022, [Online]. Available: https://doi.org/10.20884/1.jutif.2022.3.3.254
Yuyun, Nurul Hidayah, and Supriadi Sahibu, “Algoritma Multinomial Naïve Bayes Untuk Klasifikasi Sentimen Pemerintah Terhadap Penanganan Covid-19 Menggunakan Data Twitter,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 4, pp. 820–826, 2021, doi: 10.29207/resti.v5i4.3146.
DOI: http://dx.doi.org/10.24014/ijaidm.v8i1.35422
Refbacks
- There are currently no refbacks.
Office and Secretariat:
Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau
Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942
Journal Indexing:
Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti | SINTA | Dimensions | ICI Index Copernicus
IJAIDM Stats