Random Forest Optimization Using Recursive Feature Elimination for Stunting Classification

Sophya Hadini Marpaung, Frans Mikael Sinaga, Khairul Hawani Rambe, Fandi Presly Simamora, Kelvin Kelvin

Abstract


Stunting is still a major health problem in Indonesia, with a prevalence of 27% in toddlers in 2023, far from the WHO target of below 20%. RSU Mitra Medika Tanjung Mulia in Medan serves patients with various socio-economic backgrounds, which affects the quality of services, including stunting detection. Conventional methods are prone to bias and error. This study used the Random Forest algorithm and the Recursive Feature Elimination (RFE) feature selection method to improve the accuracy of stunting classification. After data preprocessing and feature selection, two main variables were identified, namely age and height. The initial Random Forest model achieved an accuracy of 94.38%, which increased to 94.42% after hyperparameter tuning. The results showed that this approach produced an accurate, efficient model that can be integrated into clinical systems, helping medical personnel identify children at risk of stunting quickly and accurately, increasing the effectiveness of interventions, and supporting government efforts to reduce the prevalence of stunting

Keywords


Classification; Mitra Medika; Optimization; RFE; Stunting

Full Text:

PDF

References


Kementerian Kesehatan RI, “Panduan Hari Gizi Nasional ke 64 Tahun 2024,” Kemkes.go.id., Jakarta, 2024.

U. M. Malang, “MIND (Multimedia Artificial Intelligent Networking Database Klasifikasi Penyakit Stunting Menggunakan Algoritma Multi-Layer Perceptron Putri Intan Ashuri, Indah Ardhia Cahyani, Christian Sri Kusuma Aditya,” Journal MIND Journal | ISSN, vol. 9, no. 1, pp. 52–63, 2024, doi: 10.26760/mindjournal.v9i1.52-63.

S. Lonang and D. Normawati, “Klasifikasi Status Stunting Pada Balita Menggunakan K-Nearest Neighbor Dengan Feature Selection Backward Elimination,” Jurnal Media Informatika Budidarma, vol. 6, no. 1, p. 49, Jan. 2022, doi: 10.30865/mib.v6i1.3312.

Mitra Medika, “RS Mitra Medika - Tanjung Mulia.” Accessed: Sep. 11, 2024. [Online]. Available: Available: https://tanjungmulia.mitramedika.com

L. Asra Laily, S. Indarjo, J. Ilmu Kesehatan Masyarakat, F. Ilmu Keolahragaan, and U. Negeri Semarang, “354 HIGEIA 7 (3) (2023) Higeia Journal Of Public Health Research And Development Literature Review: Dampak Stunting terhadap Pertumbuhan dan Perkembangan Anak,” 2023, doi: 10.15294/higeia/v7i3/63544.

R. Yusran, A. Nanda, A. Amalda, R. Luthvia, and R. Fadlan, “Upaya Pemenuhan Kesadaran Masyarakat dan Pemenuhan Gizi Seimbang untuk Mencegah Peningkatan Angka Stunting di Nagari Pariangan 2023,” Inovasi Jurnal Pengabdian Masyarakat, vol. 1, no. 2, pp. 131–140, Aug. 2023, doi: 10.54082/ijpm.138.

A. A. R. Reza and Muhammad Syaifur Rohman, “Prediction Stunting Analysis Using Random Forest Algorithm and Random Search Optimization,” Journal of Informatics and Telecommunication Engineering, vol. 7, no. 2, pp. 534–544, Jan. 2024, doi: 10.31289/jite.v7i2.10628.

J. R. Khan, J. H. Tomal, and E. Raheem, “Model and variable selection using machine learning methods with applications to childhood stunting in Bangladesh,” Inform Health Soc Care, vol. 46, no. 4, pp. 425–442, 2021, doi: 10.1080/17538157.2021.1904938.

M. Yunus, M. K. Biddinika, and A. Fadlil, “Classification of Stunting in Children Using the C4.5 Algorithm,” Jurnal Online Informatika, vol. 8, no. 1, pp. 99–106, Jun. 2023, doi: 10.15575/join.v8i1.1062.

W. S. Lestari, Y. M. Saragih, and Caroline, “Comparison of Deep Neural Networks and Random Forest Algorithms for Multiclass Stunting Prediction in Toddlers,” Teknika, vol. 13, no. 3, pp. 412–417, Oct. 2024, doi: 10.34148/teknika.v13i3.1063.

M. N. A. Khan and R. M. Yunus, “A hybrid ensemble approach to accelerate the classification accuracy for predicting malnutrition among under-five children in sub-Saharan African countries,” Nutrition, vol. 108, Apr. 2023, doi: 10.1016/j.nut.2022.111947.

H. Pohan et al., “Penerapan Algoritma K-Medoids dalam Pengelompokan Balita Stunting di Indonesia”.

P. Prihandoko, D. Jollyta, G. Gusrianty, M. Siddik, and J. Johan, “Cluster Validity for Optimizing Classification Model: Davies Bouldin Index – Random Forest Algorithm,” MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer, vol. 24, no. 1, pp. 61–72, Nov. 2024, doi: 10.30812/matrik.v24i1.4043.

S. Marsya Finda and D. Wahyu Utomo, “Klasifikasi Stunting Balita menggunakan Metode Ensemble Learning dan Random Forest,” Jl. Imam Bonjol No, vol. 15, no. 02, 2024, doi: 10.35970/infotekmesin.v15i2.2326.

A. M. Priyatno and T. Widiyaningtyas, “A Systematic Literature Review: Recursive Feature Elimination Algorithms,” JITK (Jurnal Ilmu Pengetahuan dan Teknologi Komputer), vol. 9, no. 2, pp. 196–207, Feb. 2024, doi: 10.33480/jitk.v9i2.5015.

F. Kesehatan Masyarakat, M. Renssca Inas, L. Widajanti, and S. Achadi Nugraheni, “Media Kesehatan Masyarakat Indonesia Hubungan Asupan Energi, Zinc, Protein pada Ibu Hamil dengan Kejadian Stunting pada Balita 7-24 Bulan di Indonesia: Literature Review”, doi: 10.14710/mkmi.21.5.354-357.

O. N. Chilyabanyama et al., “Performance of Machine Learning Classifiers in Classifying Stunting among Under-Five Children in Zambia,” Children, vol. 9, no. 7, Jul. 2022, doi: 10.3390/children9071082.

N. Faoziatun Khusna et al., “Implementasi Random Forest dalam Klasifikasi Kasus Stunting pada Balita dengan Hyperparameter Tuning Grid Search,” Seminar Nasional Sains Data, vol. 2024.

B. Satria, T. A. Y. Siswa, and W. J. Pranoto, “Optimasi Random Forest dengan Genetic Algorithm dan Recursive Feature Elimination pada High Dimensional Data Stunting Samarinda,” Jurnal Media Informatika Budidarma, vol. 8, no. 3, p. 1778, Jul. 2024, doi: 10.30865/mib.v8i3.7883.

H. Nalatissifa, W. Gata, S. Diantika, and K. Nisa, “Perbandingan Kinerja Algoritma Klasifikasi Naive Bayes, Support Vector Machine (SVM), dan Random Forest untuk Prediksi Ketidakhadiran di Tempat Kerja,” Jurnal Informatika Universitas Pamulang, vol. 5, no. 4, p. 578, Dec. 2021, doi: 10.32493/informatika.v5i4.7575.

R. Rizqi Robbi Arisandi, B. Warsito, and A. Rachman Hakim, “Aplikasi Naïve Bayes Classifier (Nbc) Pada Klasifikasi Status Gizi Balita Stunting Dengan Pengujian K-Fold Cross Validation,” vol. 11, no. 1, pp. 130–139, 2022, [Online]. Available: https://ejournal3.undip.ac.id/index.php/gaussian/

A. Husaini, I. Hoeronis, H. H. Lumana, and L. D. Puspareni, “Early Detection of Stunting in Toddlers Based on Ensemble Machine Learning in Purbaratu Tasikmalaya,” Jurnal Sistem dan Teknologi Informasi (JustIN), vol. 11, no. 3, p. 487, Jul. 2023, doi: 10.26418/justin.v11i3.66465.




DOI: http://dx.doi.org/10.24014/ijaidm.v8i1.35295

Refbacks

  • There are currently no refbacks.


Office and Secretariat:

Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau

Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942

Click Here for Information


Journal Indexing:

Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti  | SINTA | Dimensions | ICI Index Copernicus 

IJAIDM Stats