ADDITIONAL MENU
Fuzzy Time Series Analysis for Stock Sales Forecasting
Abstract
Investing is often considered one of the ways to generate profits by allocating funds to a place or company with the aim of gaining profits and avoiding inflation in the future. Among the many types of investments, investing in stocks is one of the popular ones. However, investing in the stock market is not easy because it is considered very risky due to the fluctuating prices of shares. The unstable movement of share prices is an important indicator for investors in determining whether they will sell, hold, or buy certain shares. Therefore, a method is needed to forecast the movement of share prices. This research aims to implement the fuzzy time series method for forecasting stock sales to support efficient decision-making. Using historical data on stock sales at PT. Bank Mandiri (Persero) from January 2, 2024, to October 4, 2024. The results of the study show that the application of the fuzzy time series method produces a forecast of stock price sales with a fairly high accuracy, with an accuracy of 98.7261%, and an MAPE error rate of only 1.2739% of the 180 data tested. This study shows that the forecasting model applied is able to provide an optimal picture of the relevant trends in the movement of stock sales, so it can be used to help make strategic decisions, thus it can be a reference for investors, especially in the stock field, to minimize risk in making decisions before investing.
Keywords
Forecasting; Fuzzy Time Series; Fuzzy Logic; Investment; Stock
Full Text:
PDFReferences
S. D. Laskarjati and I. S. Ahmad, “Perbandingan Peramalan Harga Saham menggunakan Autoregressive Intergrated Moving Average (ARIMA) dan Fuzzy Time series Markov Chain (Studi Kasus: Saham PT Indofood CBP Sukses Makmur Tbk),” J. Sains dan Seni ITS, vol. 11, no. 6, 2023, doi: 10.12962/j23373520.v11i6.91417.
A. Rahmawati and W. Sulistijanti, “Peramalan Harga Penutupan Saham PT . Unilever Indonesia Dengan Menggunakan Metode Fuzzy Time Series Lee,” J. Mirai Manag., vol. 8, no. 2, pp. 367–378, 2023.
M. Odelia, D. A. I. Maruddani, and H. Yasin, “Peramalan Harga Saham Dengan Metode Logistic Smooth Transition Autoregressive (LSTAR) (Studi Kasus pada Harga Saham Mingguan PT. Bank Mandiri Tbk Periode 03 Januari 2011 sampai 24 Desember 2018),” J. Gaussian, vol. 9, no. 4, pp. 391–401, 2020, doi: 10.14710/j.gauss.v9i4.29403.
R. F. Ramdan, “Implementasi algoritma fuzzy time series untuk memprediksi pergerakan harga emas,” vol. 2, no. 1, pp. 143–152, 2022, [Online]. Available: https://etheses.uinsgd.ac.id/id/eprint/54490%0Ahttps://etheses.uinsgd.ac.id/54490/4/4_bab1.pdf
Andres and Erlin, “Peramalan Jumlah Penjualan Tepung Pada UD. Citra Pekanbaru Menggunakan Fuzzy Time Series,” J. Mhs. Apl. Teknol. Komput. dan Inf., vol. 4, no. 3, pp. 128–134, 2022, [Online]. Available: www.bps.go.id
N. Kumar and H. Kumar, “Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID- 19, 2020.
M. Pant and S. Kumar, “Particle swarm optimization and intuitionistic fuzzy set-based novel method for fuzzy time series forecasting,” Granul. Comput., vol. 7, no. 2, pp. 285–303, 2022, doi: 10.1007/s41066-021-00265-3.
E. Bas and E. Egrioglu, Robust Picture Fuzzy Regression Functions Approach Based on M-Estimators for the Forecasting Problem, no. 0123456789. Springer US, 2024. doi: 10.1007/s10614-024-10647-9.
S. Hariyanto, Y. D. Sumanto, S. Khabibah, and Zaenurrohman, “Average-Based Fuzzy Time Series Markov Chain Based on Frequency Density Partitioning,” J. Appl. Math., vol. 2023, 2023, doi: 10.1155/2023/9319883.
U. Yudatama, “Fuzzy Time Series Dan Algoritme Average-Based Length Untuk Prediksi Pekerja Migran Indonesia Fuzzy Time Series And Average-Based Length Algorithm For Indonesian Migrant Workers Prediction,” vol. 6, no. 4, pp. 369–376, 2019, doi: 10.25126/jtiik.201961177.
P. Gloria and E. Sediyono, “Perancangan Sistem Rekomendasi Pemberian Beasiswa dengan Metode Fuzzy Tsukamoto,” 2022. [Online]. Available: https://journal-computing.org/index.php/journal-ita/index
D. Tambunan, “Investasi Saham di Masa Pandemi COVID-19,” Widya Cipta J. Sekr. dan Manaj., vol. 4, no. 2, pp. 117–123, 2020, doi: 10.31294/widyacipta.v4i2.8564.
L. yusuf, “Sistem Informasi Peramalan Penjualan Produk Dengan Menggunakan Metode Fuzzy Time Series Berbasis Web (Study Kasus: CV. Surya Kencana Food)”. 2020. Inovate Vol.06, No.1, Avalible : https://ejournal.unhasy.ac.id/index.php/inovate/article/view/3165
M. Hisam, “Menavigasi Volatilitas Pasar: Wawasan Tentang Instrumen Keuangan Dan Strategi Investasi,” Curr. J. Ekon. dan Perbank. Syariah, vol. 2, no. 2, pp. 315–328, 2024, doi: 10.32806/ke534p70.
H. Kambono, “Pengaruh Investasi Asing dan Investasi Dalam Negeri terhadap Pertumbuhan Ekonomi Indonesia Elyzabet Indrawati Marpaung,” J. Akunt., vol. 12, no. 1, pp. 137–145, 2020, [Online]. Available: http://journal.maranatha.edu
N. Muntaja, “Penerapan Algoritma Logika Fuzzy Mamdani Untuk Optimalisasi Stok Dari Berbagai Jenis Spareparts Handphone,” vol. 5, no. 4, pp. 1023–1032, 2024, doi: 10.47065/josyc.v5i4.5836.
O. Castillo, J. R. Castro, and P. Melin, “Forecasting the COVID-19 with Interval Type-3 Fuzzy Logic and the Fractal Dimension,” Int. J. Fuzzy Syst., vol. 25, no. 1, pp. 182–197, 2023, doi: 10.1007/s40815-022-01351-7.
N. F. Rahim, M. Othman, R. Sokkalingam, and E. Abdul Kadir, “Forecasting Crude Palm Oil Prices Using Fuzzy Rule-Based Time Series Method,” IEEE Access, vol. 6, pp. 32216–32224, Jun. 2018, doi: 10.1109/ACCESS.2018.2846809.
S. A. W. Dinata, A. A. Purbosari, and P. Hasanah, “Forecasting Indonesian Oil, Non-Oil and Gas Import Export with Fuzzy Time Series,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 16, no. 4, p. 389, Oct. 2022, doi: 10.22146/ijccs.78399.
B. On and I. Ratio, “Singh ’ S Fuzzy Time Series Forecasting Modification,” vol. 4, no. 2012, pp. 255–264, 2024.
R. Z. Nasution and S. Sriani, “Fuzzy Time Series and Data Visualization for Forecasting Sales of Grocery Ingredients,” PIKSEL Penelit. Ilmu Komput. Sist. Embed. Log., vol. 11, no. 2, pp. 425–434, 2023, doi: 10.33558/piksel.v11i2.7383.
DOI: http://dx.doi.org/10.24014/ijaidm.v8i1.34370
Refbacks
- There are currently no refbacks.
Office and Secretariat:
Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau
Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942
Journal Indexing:
Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti | SINTA | Dimensions | ICI Index Copernicus
IJAIDM Stats