ADDITIONAL MENU
Comparison of Recurrent Neural Network and Naive Bayes Algorithms in Identifying Stunting in Toddlers
Abstract
Stunting in toddlers is a health issue that affects their quality of life. This study aims to predict stunting status using three classification methods: Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), and Gaussian Naive Bayes. The dataset from Kaggle was split into 70% for training and 30% for testing to ensure optimal model evaluation. The RNN model was built with three hidden layers of 64 units each, while the LSTM model had four hidden layers with the same number of units. Both models utilized hidden states to capture temporal patterns and employed the tanh activation function to detect complex data patterns. The ADAM optimizer with a learning rate of 0.001 was applied to accelerate convergence. In contrast, the Gaussian Naive Bayes model used a simple probabilistic approach without temporal patterns, making it suitable for simpler datasets. Evaluation using accuracy and RMSE showed that LSTM achieved the highest accuracy (91%), followed by RNN (90%), though both exhibited signs of overfitting. Gaussian Naive Bayes attained 72% accuracy with stable performance. While LSTM and RNN effectively capture complex temporal patterns, they are prone to overfitting, whereas Gaussian Naive Bayes is suitable for initial implementation or simpler datasets, supporting early intervention for stunted toddlers.
Keywords
Gausian Naive Bayes; Long Short-Term Memory; Recurrent Neural Network; Stunting; Toddlers
Full Text:
PDFReferences
H. Herlianty, A. Setyawati, A. Lontaan, T. Limbong, I. A. Tyarini, dan S. Z. Putri, “Determinants Influence the Incidence of Stunting in Toddlers Aged 6-59 Months,” J. Edukasi Ilm. Kesehat., vol. 1, no. 2, hal. 73–79, 2023, doi: 10.61099/junedik.v1i2.18.
M. R. U. Hutabarat, I. Irwanto, dan S. Sulistiawati, “Risk factors of stunting in toddler aged 24-59 month,” J. Kebidanan, vol. 10, no. 2, hal. 119, 2021, doi: 10.26714/jk.10.2.2021.119-128.
P. Pamungkas dan A. P. Hidayathillah, “PENGEMBANGAN MODEL KASITING BERBASIS ARTIFICIAL INTELLIGENCE TERHADAP DETEKSI DINI STUNTING,” vol. 8, hal. 5829–5835, 2024.
Siti Masrichah, “Ancaman Dan Peluang Artificial Intelligence (AI),” Khatulistiwa J. Pendidik. dan Sos. Hum., vol. 3, no. 3, hal. 83–101, 2023, doi: 10.55606/khatulistiwa.v3i3.1860.
R. B. Ramadhan dan M. A. Romli, “MOBILE HEALTH MONITORING APPLICATION AS AN EFFORT TO DETECT STUNTING IN EARLY CHILDHOOD BASED ON ANDROID APLIKASI MOBILE HEALTH MONITORING SEBAGAI UPAYA DETEKSI STUNTING PADA ANAK USIA DINI,” hal. 679–689, 2024.
R. M. Sari, A. Rizka, N. A. Putri, dan A. Efriana, “Penerapan Data Mining Untuk Analisis Stunting Pada Balita,” vol. 13, no. November, hal. 1717–1728, 2024.
S. Ramadoan, “Model Intervensi Terpadu dalam Mengatasi Prevalensi Stunting di Kota Bima,” hal. 229–239, 2024.
A. Farhah, A. L. Prasasti, dan M. W. Paryasto, “Implementasi Recurrent Neural Network dalam Memprediksi Kepadatan Restoran Berbasis LSTM,” J. Media Inform. Budidarma, vol. 5, no. 2, hal. 524, 2021, doi: 10.30865/mib.v5i2.2916.
A. Nugroho dan Y. Religia, “Analisis Optimasi Algoritma Klasifikasi Naive Bayes menggunakan Genetic Algorithm dan Bagging,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 3, hal. 504–510, 2021, doi: 10.29207/resti.v5i3.3067.
A. Jatmiko, N. D. Hendrawan, A. S. Affandi, dan D. S. Susanto, “Sistem Pendeteksi Jenis Penyakit Pernafasan Menggunakan Metode Gabungan GRU dan LSTM Melalui Suara Pasien dengan Gangguan Pernafasan,” J. Inform. Polinema, vol. 9, no. 4, hal. 445–450, 2023, doi: 10.33795/jip.v9i4.1407.
D. U. Rachmad, H. Oktavianto, dan M. Rahman, “Perbandingan Metode K-Nearest Neighbor Dan Gaussian Naive Bayes Untuk Klasifikasi Penyakit Stroke,” J. Smart Teknol., vol. 3, no. 4, hal. 405–412, 2022.
V. Utomo, Agusta Praba Ristadi Pinem, dan Bernadus Very Christoko, “Pengenalan Karakter Optis untuk Pencatatan Meter Air dengan Long Short Term Memory Recurrent Neural Network,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 1, hal. 132–138, 2021, doi: 10.29207/resti.v5i1.2807.
M. Bukhsh, M. S. Ali, M. U. Ashraf, K. Alsubhi, dan W. Chen, “An Interpretation of Long Short-Term Memory Recurrent Neural Network for Approximating Roots of Polynomials,” IEEE Access, vol. 10, hal. 28194–28205, 2022, doi: 10.1109/ACCESS.2022.3157306.
M. I. I. A. N. Kartini, Karakteristik Sumber Daya Manusia Era Digital (Perspektif KepeMimpinan, Motivasi dan Etos Kerja). 2021.
R. Ardianto dan S. K. Wibisono, “Analisis Deep Learning Metode Convolutional Neural Network Dalam Klasifikasi Varietas Gandum,” J. Kolaboratif Sains(JKS), vol. 6, no. 12, hal. 2081–2092, 2023, doi: 10.56338/jks.v6i12.4938.
G. R. Kanagachidambaresan, A. Ruwali, D. Banerjee, dan K. B. Prakash, “Klasifikasi Malware Menggunakan MetodeRecurrent Neural Network,” EAI/Springer Innov. Commun. Comput., vol. 23, no. 3, hal. 53–61, 2021.
E. A. Winanto, K. Kurniabudi, S. Sharipuddin, I. S. Wijaya, dan D. Sandra, “Deteksi Serangan pada Jaringan Kompleks IoT menggunakan Recurrent Neural Network,” JURIKOM (Jurnal Ris. Komputer), vol. 9, no. 6, hal. 1996, 2022, doi: 10.30865/jurikom.v9i6.5298.
D. Yolanda, K. Gunadi, dan E. Setyati, “Pengenalan Alfabet Bahasa Isyarat Tangan Secara Real-Time dengan Menggunakan Metode Convolutional Neural Network dan Recurrent Neural Network,” J. Infra, vol. 8, no. 1, hal. 203–208, 2020, [Daring]. Tersedia pada: https://publication.petra.ac.id/index.php/teknik-informatika/article/view/9791
Y. Naufal, R. Putro, A. Afriansyah, dan R. Bagaskara, “Penggunaan Algoritma Gaussian Naïve Bayes & Decision Tree Untuk Klasifikasi Tingkat Kemenangan Pada Game Mobile Legends,” JUKI J. Komput. dan Inform., vol. 6, no. 1, hal. 10–26, 2024.
R. Setiawan dan A. Triayudi, “Klasifikasi Status Gizi Balita Menggunakan Naïve Bayes dan K-Nearest Neighbor Berbasis Web,” J. Media Inform. Budidarma, vol. 6, no. 2, hal. 777, 2022, doi: 10.30865/mib.v6i2.3566.
DOI: http://dx.doi.org/10.24014/ijaidm.v8i1.33946
Refbacks
- There are currently no refbacks.
Office and Secretariat:
Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau
Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942
Journal Indexing:
Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti | SINTA | Dimensions | ICI Index Copernicus
IJAIDM Stats