Classification of The Level of Public Satisfaction With the Use of Water Tourism Jetski in Balai Ujung Tanjung Using the Naïve Bayes Algorithm

Nursalimah Isnaina Fatwa, Rakhmat Kurniawan

Abstract


Jetski water tourism is one of the attractions that is often visited by the public compared to other attractions. One of the factors causing this is because there is no fee charged to visitors. The source of funds used in this tourist attraction is from the local government budget. Be it in terms of assessment to improve facilities, or even comments on whether the Jetski Water Tourism facility is good or bad. Certainly, with the public comments, it will help the government in improving its services to the community, especially in the management of this water tourism Jetski.The sentiment data collected from visitors to this Water Tourism Jetski can be used as a benchmark for the government in improving this Water Tourism Jetski facility. Both in terms of scope and the Jetski media used. By knowing the responses and comments of the community regarding Jetski Wisata Air, the government can evaluate in order to support visitor satisfaction and so that Jetski Wisata Air can last long and compete with other tourist attractions. The Naïve Bayes Algorithm has often been used in a study in the form of sentiment analysis. The Naïve Bayes model shows that the level of public satisfaction with Jetski Water Tourism in Ujung Tanjung Hall, Tanjungbalai City can be predicted with an accuracy of 75%. This indicates that the model is quite effective in identifying the level of user satisfaction, although there is a 25% possibility of inaccuracy in prediction. With this accuracy, the model can provide useful insights for the evaluation and improvement of jetski tourism services, but it should be considered to conduct further analysis to improve accuracy and get a more comprehensive picture of community satisfaction

Keywords


Classification; Data Mining; Machine Learning; Naïve Bayes Algorithm; Python

Full Text:

PDF

References


F. Fitroh and F. Hudaya, “Systematic Literature Review: Analisis Sentimen Berbasis Deep Learning,” TEKNOSI, vol. 9, no. 2, pp. 132–140, Aug. 2023, doi: 10.25077/TEKNOSI.v9i2.2023.132-140.

M. H. Tinambunan, A. Hasibuan, S. Wahyuni, and A. S. Wibowo, “KLASIFIKASI TINGKAT KEPUASAN MAHASISWA TERHADAP FASILITAS PADA FTIK UNIVERSITAS DHARMAWANGSA MEDAN DENGAN ALGORITMA NAIVE BAYES,” BN, vol. 6, no. 1, pp. 208–215, Jun. 2023, doi: 10.46576/bn.v6i1.3356.

G. C. Triasis, D. Arisandi, and T. Sutrisno, “ANALISIS KEPUASAN PENGGUNAAN APLIKASI SHOPEE MENGGUNAKAN ALGORITMA NAÏVE BAYES,” jiksi, vol. 10, no. 1, Mar. 2022, doi: 10.24912/jiksi.v10i1.17857.

A. P. Nardilasari, A. L. Hananto, S. S. Hilabi, T. Tukino, and B. Priyatna, “Analisis Sentimen Calon Presiden 2024 Menggunakan Algoritma SVM Pada Media Sosial Twitter,” JOINTECS, vol. 8, no. 1, p. 11, Mar. 2023, doi: 10.31328/jointecs.v8i1.4265.

A. I. Putri and M. Furqan, “Application of Data Mining to Predict Birth Rates in Medan City Using the K-Nearest Neighbor Method,” Journal of Computer Science, vol. 5, no. 1.

M. Furqan, S. Sriani, and S. M. Sari, “Analisis Sentimen Menggunakan K-Nearest Neighbor Terhadap New Normal Masa Covid-19 Di Indonesia,” tc, vol. 21, no. 1, pp. 51–60, Feb. 2022, doi: 10.33633/tc.v21i1.5446.

S. Harlina, S. Suryani, and M. Oton Kadang, “Penerapan Algoritma K-Nearest Neighbor Untuk Klasifikasi kelayakan Calon Nasabah Kredit Berbasis Web,” SINTaKS, vol. 1, no. 1, Aug. 2022, doi: 10.35842/sintaks.v1i1.18.

Y. Asri, W. N. Suliyanti, D. Kuswardani, and M. Fajri, “Pelabelan Otomatis Lexicon Vader dan Klasifikasi Naive Bayes dalam menganalisis sentimen data ulasan PLN Mobile: Analisis Sentimen,” petir, vol. 15, no. 2, pp. 264–275, Nov. 2022, doi: 10.33322/petir.v15i2.1733.

D. H. Depari, Y. Widiastiwi, and M. M. Santoni, “Perbandingan Model Decision Tree, Naive Bayes dan Random Forest untuk Prediksi Klasifikasi Penyakit Jantung,” Informatik : Jurnal Ilmu Komputer, vol. 18, no. 3, p. 239, Dec. 2022, doi: 10.52958/iftk.v18i3.4694.

S. Hilda Kusumahadi, H. Junaedi, and J. Santoso, “Klasifikasi Helpdesk Menggunakan Metode Support Vector Machine,” jpit, vol. 4, no. 1, pp. 54–60, Jan. 2019, doi: 10.30591/jpit.v4i1.1125.

C. D. A. A. P. Chrishariyani, Y. Rahman, and Q. Aini, “Kepuasan Pengguna Layanan Shopee Food Menggunakan Algoritma Naive Bayes,” J. Sistem Info. Bisnis, vol. 12, no. 2, pp. 98–105, Dec. 2022, doi: 10.21456/vol12iss2pp98-105.

G. Gustientiedina, M. Siddik, and Y. Deselinta, “Penerapan Naïve Bayes untuk Memprediksi Tingkat Kepuasan Mahasiswa Terhadap Pelayanan Akademis,” J.InfoMedia, vol. 4, no. 2, p. 89, Jan. 2020, doi: 10.30811/jim.v4i2.1892.

Sonia Wanda Mafriza and Armansyah, “Klasifikasi karir mahasiswa bidang web developer menggunakan algoritma naïve bayes,” infotech, vol. 4, no. 2, pp. 270–280, Dec. 2023, doi: 10.37373/infotech.v4i2.907.

A. Safira and F. N. Hasan, “ANALISIS SENTIMEN MASYARAKAT TERHADAP PAYLATER MENGGUNAKAN METODE NAIVE BAYES CLASSIFIER,” Jurnal Sistem Informasi, vol. 5, no. 1, 2023.

S. Wirma, “Data Mining Dengan Metode Naïves Bayes Classifer dalam Memprediksi Tingkat Kepuasan Pelayanan Dokumen Kependudukan,” INFEB, pp. 156–160, Sep. 2022, doi: 10.37034/infeb.v4i3.155.

D. Abimanyu, E. Budianita, E. P. Cynthia, F. Yanto, and Y. Yusra, “Analisis Sentimen Akun Twitter Apex Legends Menggunakan VADER,” JNKTI, vol. 5, no. 3, pp. 423–431, Jun. 2022, doi: 10.32672/jnkti.v5i3.4382.

Suparyanto, “Klasifikasi Kepuasan Layanan Akademik Di STMIK El Rahma Menggunakan Metode Algoritma Naive Bayes,” FAHMA, vol. 20, no. 2, pp. 100–111, May 2022, doi: 10.61805/fahma.v20i2.37.

Z. Alhaq, A. Mustopa, S. Mulyatun, and J. Santoso Dwi, “Penerapan Metode Support Vector Machine untuk Analisis Sentimen Pengguna Twitter,” Journal of Information System Management, vol. 3, 2021.

A. H. Lubis, L. P. A. Lubis, and Sriani, “Sentiment analysis on twitter about the death penalty using the support vector machine method,” TEKNOSAINS: Jurnal Sains, Teknologi dan Informatika, vol. 11, no. 2, pp. 312–321, 2024, doi: 10.37373.

E. H. Muktafin, K. Kusrini, and E. T. Luthfi, “Analisis Sentimen pada Ulasan Pembelian Produk di Marketplace Shopee Menggunakan Pendekatan Natural Language Processing,” eksplora, vol. 10, no. 1, pp. 32–42, Sep. 2020, doi: 10.30864/eksplora.v10i1.390.

E. R. Lidinillah, T. Rohana, and A. R. Juwita, “Analisis sentimen twitter terhadap steam menggunakan algoritma logistic regression dan support vector machine,” tekno, vol. 10, no. 2, pp. 154–164, Jul. 2023, doi: 10.37373/tekno.v10i2.440.

V. P. Virza, G. Tri Pranot, and F. Eko Putra, “Klasifikasi Kebutuhan Sparepart Dengan Algoritma K-Nearest Neighbor Untuk Meningkatkan Penjualan Sparepart,” bit, vol. 4, no. 3, pp. 287–293, Sep. 2023, doi: 10.47065/bit.v4i3.729.

M. Siddik, H. Hendri, R. N. Putri, Y. Desnelita, and G. Gustientiedina, “Klasifikasi Kepuasan Mahasiswa Terhadap Pelayanan Perguruan Tinggi Menggunakan Algoritma Naïve Bayes,” INTECOMS, vol. 3, no. 2, pp. 162–166, Nov. 2020, doi: 10.31539/intecoms.v3i2.1654.




DOI: http://dx.doi.org/10.24014/ijaidm.v7i2.32761

Refbacks

  • There are currently no refbacks.


Office and Secretariat:

Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau

Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942

Click Here for Information


Journal Indexing:

Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti  | SINTA | Dimensions | ICI Index Copernicus 

IJAIDM Stats