ADDITIONAL MENU
Sentiment Analysis Towards the Film Dirty Vote on Twitter Social Media Using the K-Nearest Neighbor Algorithm
Abstract
The appearance of the dirty vote film has received public attention and went viral on social media after being released and watched by millions of people in a short time. The dirty vote film has become a topic of discussion, one of which is on the social media platform Twitter. This research was conducted to determine the views or tendencies of public opinion regarding dirty vote films on Twitter social media using K-Nearest Neighbor which will be classified into positive, neutral and negative sentiment. The sentiment data that was collected in the data crawling process was 4000 pieces of data. Then after preprocessing there were 3978 data. Labeling was carried out using text blob, it was found that the negative sentiment class was 3470 superior to the positive sentiment class of 451 and the neutral sentiment class was 57. The 10-fold cross validation test produced an average accuracy value of 87.5%. Testing was carried out with 80% training data consisting of 3182 data and 20% test data consisting of 796 test data. The results of sentiment analysis show that the K-Nearest Neighbor method can be used for sentiment analysis. The accuracy value obtained was 87%, precision was 87%, recall was 100%, and f1-score was 93%.
Keywords
Dirty Vote; K-Fold Cross Validation; K-Nearest Neighbor; Sentiment Analysis; Social Media
Full Text:
PDFReferences
B. Huda and B. Priyatna, “Penggunaan Aplikasi Content Management System (CMS) Untuk Pengembangan Bisnis Berbasis E-commerce,” Systematics, vol. 1, no. 2, p. 81, Dec. 2019, doi: 10.35706/sys.v1i2.2076.
D. Sandi, E. Utami, and K. Kusnawi, “Analisis Sentimen Publik Terhadap Elektabilitas Ganjar Pranowo di Tahun Politik 2024 di Twitter dengan Algoritma KNN dan Naïve Bayes,” Jurnal Media Informatika Budidarma, vol. 7, no. 3, p. 1097, Jul. 2023, doi: 10.30865/mib.v7i3.6298.
P. Arsi and R. Waluyo, “Analisis Sentimen Wacana Pemindahan Ibu Kota Indonesia Menggunakan Algoritma Support Vector Machine (SVM),” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 8, no. 1, p. 147, Feb. 2021, doi: 10.25126/jtiik.0813944.
E. Maria and E. Junirianto, “Sistem Pendukung Keputusan Pemilihan Bibit Karet Menggunakan Metode Topsis,” Informatika Mulawarman : Jurnal Ilmiah Ilmu Komputer, vol. 16, no. 1, p. 7, Mar. 2021, doi: 10.30872/jim.v16i1.5132.
M. J. Palepa, N. Pratiwi, and R. Q. Rohmansa, “Analisis Sentimen Masyarakat Tentang Pengaruh Politik Identitas Pada Pemilu 2024 Terhadap Toleransi Beragama Menggunakan Metode K - Nearest Neighbor,” JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), vol. 9, no. 1, pp. 389–401, Feb. 2024, doi: 10.29100/jipi.v9i1.4957.
R. Wijaya and A. Suwandhi, “Sentimen Komentar Universitas Pelita Harapan Pada TikTok Menggunakan Metode K-Nearest Neighbor,” JDMIS: Journal of Data Mining and Information Systems, vol. 2, no. 1, pp. 26–36, Feb. 2024, doi: 10.54259/jdmis.v2i1.2418.
Z. Alhaq, A. Mustopa, S. Mulyatun, and J. D. Santoso, “Penerapan Metode Support Vector Machine Untuk Analisis Sentimen Pengguna Twitter,” Journal of Information System Management (JOISM), vol. 3, no. 2, pp. 44–49, Jul. 2021, doi: 10.24076/joism.2021v3i2.558.
Betesda, “Peningkatan Optimasi Sentimen Dalam Pelaksanaan Proses Pemilihan Presiden Berdasarkan Opini Publik dengan Menggunakan Algoritma Naive Bayes dan Paricle Swarm Optimization,” Jurnal Sistem Informasi Universitas Suryadarma, vol. 7, no. 2, pp. 101–114, Jun. 2014, doi: 10.35968/jsi.v7i2.452.
N. S. Marga, “Sentimen Analisis Tentang Kebijakan Pemerintah Terhadap Kasus Corona Menggunakan Metode Naive Bayes,” Jurnal Informatika dan Rekayasa Perangkat Lunak, vol. 2, no. 4, pp. 453–463, Feb. 2022, doi: 10.33365/jatika.v2i4.1602.
L. A. Andika, P. A. N. Azizah, and R. Respatiwulan, “Analisis Sentimen Masyarakat terhadap Hasil Quick Count Pemilihan Presiden Indonesia 2019 pada Media Sosial Twitter Menggunakan Metode Naive Bayes Classifier,” Indonesian Journal of Applied Statistics, vol. 2, no. 1, p. 34, Jul. 2019, doi: 10.13057/ijas.v2i1.29998.
Herwinsyah and A. Witanti, “Analisis Sentimen Masyarakat Terhadap Vaksinasi Covid-19 Pada Media Sosial Twitter Menggunakan Algoritma Support Vector Machine (SVM),” Jurnal Sistem Informasi dan Informatika (Simika), vol. 5, no. 1, pp. 59–67, Feb. 2022, doi: 10.47080/simika.v5i1.1411.
A. Z. Amrullah, A. Sofyan Anas, and M. A. J. Hidayat, “Analisis Sentimen Movie Review Menggunakan Naive Bayes Classifier Dengan Seleksi Fitur Chi Square,” Jurnal Bumigora Information Technology, vol. 2, no. 1, pp. 40–44, 2020, doi: 10.30812/bite.v2i1.804.
W. Widayat, “Analisis Sentimen Movie Review menggunakan Word2Vec dan metode LSTM Deep Learning,” Jurnal Media Informatika Budidarma, vol. 5, no. 3, p. 1018, Jul. 2021, doi: 10.30865/mib.v5i3.3111.
S. F. Pane and J. Ramdan, “Pemodelan Machine Learning : Analisis Sentimen Masyarakat Terhadap Kebijakan PPKM Menggunakan Data Twitter,” Jurnal Sistem Cerdas, vol. 5, no. 1, pp. 12–20, May 2022, doi: 10.37396/jsc.v5i1.191.
W. J. Sari et al., “Performance Comparison of Random Forest, Support Vector Machine and Neural Network in Health Classification of Stroke Patients,” Public Research Journal of Engineering, Data Technology and Computer Science, vol. 2, no. 1, pp. 34–43, Apr. 2024, doi: 10.57152/predatecs.v2i1.1119.
S. Suryani, M. F. Fayyad, D. T. Savra, V. Kurniawan, and B. H. Estanto, “Sentiment Analysis of Towards Electric Cars using Naive Bayes Classifier and Support Vector Machine Algorithm,” Public Research Journal of Engineering, Data Technology and Computer Science, vol. 1, no. 1, pp. 1–9, 2023, doi: 10.57152/predatecs.v1i1.814.
A. P. Giovani, A. Ardiansyah, T. Haryanti, L. Kurniawati, and W. Gata, “Analisis Sentimen Aplikasi Ruang Guru di Twitter Menggunakan Algoritma Klasifikasi,” Jurnal Teknoinfo, vol. 14, no. 2, p. 115, Jul. 2020, doi: 10.33365/jti.v14i2.679.
S. G. Setyorini and Mustakim, “Application of The Nearest Neighbor Algorithm for Classification of Online Taxibike Sentiments In Indonesia In The Google Playstore Application,” Journal of Physics: Conference Series, vol. 2049, no. 1, p. 012026, Oct. 2021, doi: 10.1088/1742-6596/2049/1/012026.
A. I. Putri et al., “Implementation of K-Nearest Neighbors, Naïve Bayes Classifier, Support Vector Machine and Decision Tree Algorithms for Obesity Risk Prediction,” Public Research Journal of Engineering, Data Technology and Computer Science, vol. 2, no. 1, pp. 26–33, Apr. 2024, doi: 10.57152/predatecs.v2i1.1110.
J. Supriyanto, D. Alita, and A. R. Isnain, “Penerapan Algoritma K-Nearest Neighbor (K-NN) Untuk Analisis Sentimen Publik Terhadap Pembelajaran Daring,” Jurnal Informatika dan Rekayasa Perangkat Lunak, vol. 4, no. 1, pp. 74–80, Mar. 2023, doi: 10.33365/jatika.v4i1.2468.
I. Saputra and D. A. Kristiyanti, Machine Learning Untuk Pemula. Bandung: Informatika Bandung, 2022.
A. Firdaus, “Aplikasi Algoritma K-Nearest Neighbor pada Analisis Sentimen Omicron Covid-19,” Jurnal Riset Statistika, pp. 85–92, Dec. 2022, doi: 10.29313/jrs.v2i2.1148.
A. Masruriyah, H. Novita, C. Sukmawati, A. Ramadhan, S. Arif, and B. Dermawan, “Pengukuran Kinerja Model Klasifikasi dengan Data Oversampling pada Algoritma Supervised Learning untuk Penyakit Jantung,” Computer Science (CO-SCIENCE), vol. 4, no. 1, pp. 62–70, Jan. 2024, doi: 10.31294/coscience.v4i1.2389.
D. Nasien, S. Sirvan, D. Deny, R. S. Ryan Syahputra, A. Akbar Marunduri, and R. Prawinata See, “Klasifikasi Penyakit Jantung Menggunakan Decision Tree dan KNN Menggunakan Ektraksi Fitur PCA,” JEKIN - Jurnal Teknik Informatika, vol. 4, no. 1, pp. 18–24, Feb. 2024, doi: 10.58794/jekin.v4i1.641.
M. F. Rahman, D. Alamsah, M. I. Darmawidjadja, and I. Nurma, “Klasifikasi Untuk Diagnosa Diabetes Menggunakan Metode Bayesian Regularization Neural Network (RBNN),” Jurnal Informatika, vol. 11, no. 1, p. 36, 2017, doi: 10.26555/jifo.v11i1.a5452.
DOI: http://dx.doi.org/10.24014/ijaidm.v7i2.32471
Refbacks
- There are currently no refbacks.
Office and Secretariat:
Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau
Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942
Journal Indexing:
Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti | SINTA | Dimensions | ICI Index Copernicus
IJAIDM Stats