Analysis of Student Dropout Potential Using the Multinomial Naive Bayes Algorithm

Dewi Afrianti, Armansyah Armansyah

Abstract


The current situation of education in Indonesia is quite concerning, especially with the high dropout rate which is one of the main problems. The variation in dropout rates in various educational institutions, including at Muhammadiyah 9 Vocational High School in Medan, reflects the diversity of challenges faced. This study aims to analyze the supporting factors that influence the potential for student dropout using the Naive Bayes Multinomial method, especially at this school. The results of the study showed that the model could understand the data with a classification performance accuracy of 83.04% at the 20% dataset testing stage. Through this test, 76 active students, 11 students with the potential to drop out, and 25 students dropped out were obtained. Meanwhile, precision, recall, and f1-score in the class with the potential to drop out cannot be displayed because the class comparison is unbalanced.


Keywords


Accuracy; Classification Model; Multinomial Naive Bayes; Potential Dropout; Supporting Factors

Full Text:

PDF

References


A. Hakim, “Faktor Penyebab Anak Putus Sekolah,” J. Pendidik., vol. 21, no. 2, pp. 122–132, 2020, doi: 10.33830/jp.v21i2.907.2020.

B. Y. A. Lestari, F. Kurniawan, and B. R. Ardi, “Penyebab tingginya anak putus sekolah jenjang Sekolah Dasar (SD),” J. Ilm. Sekol. Dasar, vol. 4, no. 2, pp. 299–308, 2020.

N. K. A. S. CAHYANI, N. L. P. SUCIPTAWATI, and K. G. SUKARSA, “Identifikasi Faktor Yang Memengaruhi Anak Putus Sekolah Di Kabupaten Badung,” E-Jurnal Mat., vol. 8, no. 4, p. 289, 2019, doi: 10.24843/mtk.2019.v08.i04.p267.

S. Ujud, T. D. Nur, Y. Yusuf, N. Saibi, and M. R. Ramli, “Penerapan Model Pembelajaran Discovery Learning Untuk Meningkatkan Hasil Belajar Siswa Sma Negeri 10 Kota Ternate Kelas X Pada Materi Pencemaran Lingkungan,” J. Bioedukasi, vol. 6, no. 2, pp. 337–347, 2023, doi: 10.33387/bioedu.v6i2.7305.

J. J. Lanawaang and R. Mesra, “Faktor Penyebab Anak Putus Sekolah di Kelurahaan Tuutu Analisis Pasal 31 Ayat 1, 2, dan 3 UUD 1945,” J. Ilm. Mandala Educ., vol. 9, no. 2, pp. 1375–1381, 2023

P. Astikaningtyas, “Peran Pendidikan Non Formal Untuk Membantu Siswa Drop Out Dalam Menyelesaikan Sekolahnya Berdasarkan Perspektif Islam (Studi Kasus Di Lembaga Ppap Seroja Jebres Surakarta),” J. Pendidik. dan Keislam., vol. 157, no. 2, pp. 157–178, 2022, [Online]. Available: https://databoks.katadata.co.id/datapublish/2022/03/16/berapa-jumlah-anak-putus-sekolah-di-

A. Yaneri, V. Suviani, and N. Vonika, “ANALISIS PENYEBAB ANAK PUTUS SEKOLAH BAGI KELUARGA MISKIN (Studi Kasus Anak Usia Sekolah Pada Keluarga Miskin di Kampung Lio Kota Depok),” J. Ilm. Perlindungan dan Pemberdaya. Sos., vol. 4, no. 1, pp. 76–89, 2022, doi: 10.31595/lindayasos.v4i1.554.

A. P. Tefa, “Analisis Faktor Penyebab Anak Putus Sekolah di Desa Oinlasi Kecamatan Mollo Selatan Kabupaten Timor Tengah Selatan,” PENSOS J. Penelit. dan Pengabdi. Pendidik. Sosiol., vol. 1, no. 1, pp. 47–56, 2023.

Assa Riswan, “Jurnal Ilmiah Society,” Fakt. Anak Putus Sekol. Di Desa Sonuo Kec. Bolangitang Barat Kabupaten BolaangMongondow Utara, vol. 2, no. 1, pp. 1–12, 2022.

S. Widaningsih, “Perbandingan Metode Data Mining Untuk Prediksi Nilai Dan Waktu Kelulusan Mahasiswa Prodi Teknik Informatika Dengan Algoritma C4,5, Naïve Bayes, Knn Dan Svm,” J. Tekno Insentif, vol. 13, no. 1, pp. 16–25, 2019, doi: 10.36787/jti.v13i1.78.

H. F. Putro, R. T. Vulandari, and W. L. Y. Saptomo, “Penerapan Metode Naive Bayes Untuk Klasifikasi Pelanggan,” J. Teknol. Inf. dan Komun., vol. 8, no. 2, 2020, doi: 10.30646/tikomsin.v8i2.500.

Yuyun, Nurul Hidayah, and Supriadi Sahibu, “Algoritma Multinomial Naïve Bayes Untuk Klasifikasi Sentimen Pemerintah Terhadap Penanganan Covid-19 Menggunakan Data Twitter,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 4, pp. 820–826, 2021, doi: 10.29207/resti.v5i4.3146.

M. A. Febriza, Q. J. Adrian, and A. Sucipto, “Penerapan Ar Dalam Media Pembelajaran Klasifikasi Bakteri,” J. BIOEDUIN Progr. Stud. Pendidik. Biol., vol. 11, no. 1, pp. 10–18, 2021, doi: 10.15575/bioeduin.v11i1.12076.

A. Sabrani, I. G. W. Wedashwara W., and F. Bimantoro, “Multinomial Naïve Bayes untuk Klasifikasi Artikel Online tentang Gempa di Indonesia,” J. Teknol. Informasi, Komputer, dan Apl. (JTIKA ), vol. 2, no. 1, pp. 89–100, 2020, doi: 10.29303/jtika.v2i1.87.

M. Afriansyah, Joni Saputra, V. Y. P. Ardhana, and Yuan Sa’adati, “Algoritma Naive Bayes Yang Efisien Untuk Klasifikasi Buah Pisang Raja Berdasarkan Fitur Warna,” J. Inf. Syst. Manag. Digit. Bus., vol. 1, no. 2, pp. 236–248, 2024, doi: 10.59407/jismdb.v1i2.438.

J. McCaffrey, “Multinomial Naive Bayes Classification Using the scikit Library.” Accessed: Apr. 17, 2023. [Online]. Available: https://visualstudiomagazine.com/articles/2023/04/17/multinomial-naive-bayes.aspx

A. Q. Ayuni et al., “Klasifikasi Topik Berita Deutsche Welle Indonesia dengan Kata Kunci Indonesia Menggunakan Metode Multinomial Naive Bayes,” Jlk, vol. 6, no. 1, pp. 11–16, 2023.

E. Mulyani, F. P. B. Muhamad, and K. A. Cahyanto, “Pengaruh N-Gram terhadap Klasifikasi Buku menggunakan Ekstraksi dan Seleksi Fitur pada Multinomial Naïve Bayes,” J. Media Inform. Budidarma, vol. 5, no. 1, p. 264, 2021, doi: 10.30865/mib.v5i1.2672.

T. Ige and S. Adewale, “AI Powered Anti-Cyber Bullying System using Machine Learning Algorithm of Multinomial Naïve Bayes and Optimized Linear Support Vector Machine Interception of Cyberbully Contents in a Messaging System by Machine Learning Algorithm,” Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 5, pp. 5–9, 2022, doi: 10.14569/IJACSA.2022.0130502.

H. Herwanto, N. L. Chusna, and M. S. Arif, “Klasifikasi SMS Spam Berbahasa Indonesia Menggunakan Algoritma Multinomial Naïve Bayes,” J. Media Inform. Budidarma, vol. 5, no. 4, p. 1316, 2021,




DOI: http://dx.doi.org/10.24014/ijaidm.v7i2.32316

Refbacks

  • There are currently no refbacks.


Office and Secretariat:

Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau

Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942

Click Here for Information


Journal Indexing:

Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti  | SINTA | Dimensions | ICI Index Copernicus 

IJAIDM Stats