ADDITIONAL MENU
Motorcycle License Plate and Driver Face Verification Using Siamese Neural Network Model
Abstract
The security and efficiency of vehicle access management systems have become a primary concern for various institutions, including universities, offices, and public facilities. Effective access management not only enhances security but also improves the flow of incoming and outgoing vehicles, reduces congestion, and enhances user experience. This research aims to develop a vehicle plate detection system and driver face recognition using the Siamese Neural Network model to optimize traffic at the gate. The methods used include the application of deep learning algorithms, specifically the Siamese Neural Network, to verify the driver's face and the use of You Only Live Once (YOLO) to detect and recognize vehicle plates in real-time. Data was collected through direct capture with the researcher's camera. The model was trained and tested using a dataset containing images of vehicle license plates and driver faces. The results showed that the developed model was able to detect and recognize the vehicle plate and the driver's face with a fairly high accuracy, namely in the object detection results getting bounding box validation is 1.05 and class loss validation is 0.95, and 0.85 mAP. As well as in training using the Siamese Neural Network, the highest result is 0.82 with a learning rate of 10e-5 with 30 epochs. It is hoped that this system can be one of the innovations that can be applied in government agencies, universities, industries, etc.
Keywords
Face Recognition; Motorcycle License Plate; Siamese Neural Network; Traffic; Vehicle Plate Detection
Full Text:
PDFReferences
R. Nandita Al Zahra, I. Maulana, A. Dwiantoro, and N. Putri Damayanti, “Artificial Intelligence (AI) Imaging untuk Peningkatan Keamanan Tempat Parkir,” Semarang, Oct. 2021.
M. Farwati, I. Talitha Salsabila, K. Raihanun Navira, and T. Sutabri, “Analisa Pengaruh Teknologi Artificial Intelligence (Ai) Dalam Kehidupan Sehari-Hari,” Jurnal Sistem Informasi & Manajemen, vol. 11, no. 01, pp. 39–46, 2023.
K. Rifki, J. Priambodo, and A. Musthofa, “Pengenalan Plat Nomor dan Wajah Pengendara Menggunakan Convolutional Neural Network dan Metode Absolute Difference pada Sistem Gerbang Otomatis,” Jurnal TEKNIK ITS, vol. 10, no. 2, pp. 386–392, 2021.
M. Farhan Aditama and M. S. Haryanti, “Sistem Pengenalan dan Verifikasi Wajah Menggunakan Transfer Learning Berbasis Raspberry PI,” Jurnal Teknologi Industri, vol. 12, no. 1, 2023.
M. Toby Suwindra, A. Erlansari, and J. W. Supratman Kandang Limun, “Analisis Kemiripan Jenis Burung Menggunakan Siamese Neural Network Analysis Of Bird Species Similarity Using Siamese Neural Network,” 2021. [Online]. Available: http://ejournal.unib.ac.id/index.php/rekursif/193
W. Hayale, P. S. Negi, and M. H. Mahoor, “Deep Siamese Neural Networks for Facial Expression Recognition in the Wild,” IEEE Trans Affect Comput, vol. 14, no. 2, pp. 1148–1158, Apr. 2023, doi: 10.1109/TAFFC.2021.3077248.
A. Setiyadi, E. Utami, and D. Ariatmanto, “Analisa Kemampuan Algoritma YOLOv8 Dalam Deteksi Objek Manusia Dengan Metode Modifikasi Arsitektur,” Jurnal Sains Komputer & Informatika (J-SAKTI, vol. 7, no. 2, pp. 891–901, 2023.
Q. Aini, N. Lutfiani, H. Kusumah, and M. S. Zahran, “Deteksi Dan Pengenalan Objek Dengan Model Machine Learning: Model YOLO,” CESS (Journal of Computer Engineering System and Science), vol. 6, no. 2, pp. 2502–714, 2021.
D. A. Abdurrafi, M. Taqijjuddin Alawiy, and B. M. Basuki, “Deteksi Klasifikasi Dan Menghitung Kendaraan Berbasis Algoritma You Only Look Once (Yolo) Menggunakan Kamera CCTV,” SCIENCE ELECTRO, vol. nn, no. 9, 2023.
Y. Zhang et al., “Similarity-based pairing improves efficiency of Siamese Neural Networks for regression tasks and uncertainty quantification,” J Cheminform, vol. 15, no. 1, Dec. 2023, doi: 10.1186/s13321-023-00744-6.
C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning,” Feb. 2016, [Online]. Available: http://arxiv.org/abs/1602.07261
G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese Neural Networks for One-shot Image Recognition,” Toronto, 2015. Accessed: Dec. 01, 2023. [Online]. Available: http://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf
Rifkie Primartha, Algoritma Machine Learning, 1st ed., vol. 1. Bandung: Informatika Bandung, 2021.
N. Dewi and F. Ismawan, “Implementasi Deep Learning Menggunakan Cnn Untuk Sistem Pengenalan Wajah,” Faktor Exacta, vol. 14, no. 1, p. 34, Mar. 2021, doi: 10.30998/faktorexacta.v14i1.8989.
M. F. Mayda and A. Musdholifah, “Siamese-Network Based Signature Verification using Self Supervised Learning,” IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 17, no. 2, p. 115, Apr. 2023, doi: 10.22146/ijccs.74627.
Y. Pratama, S. T. N. Nainggolan, D. I. Nadya, and N. Y. Naipospos, “One-shot learning Batak Toba character recognition using Siamese Neural Network,” Telkomnika (Telecommunication Computing Electronics and Control), vol. 21, no. 3, pp. 600–612, Jun. 2023, doi: 10.12928/TELKOMNIKA.v21i3.24927.
M. Toby Suwindra, A. Erlansari, and J. W. Supratman Kandang Limun, “Analisis Kemiripan Jenis Burung Menggunakan Siamese Neural Network Analysis Of Bird Species Similarity Using Siamese Neural Network,” 2021. [Online]. Available: http://ejournal.unib.ac.id/index.php/rekursif/193
N. Reimers and I. Gurevych, “Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks,” ArXiv, vol. 35, no. 11, Aug. 2019, [Online]. Available: http://arxiv.org/abs/1908.10084
L. Ramos, E. Casas, E. Bendek, C. Romero, and F. Rivas-Echeverría, “Hyperparameter optimization of YOLOv8 for smoke and wildfire detection: Implications for agricultural and environmental safety,” Artificial Intelligence in Agriculture, vol. 12, pp. 109–126, Jun. 2024, doi: 10.1016/j.aiia.2024.05.003.
E. Panja, H. Hendry, and C. Dewi, “YOLOv8 Analysis for Vehicle Classification Under Various Image Conditions,” Scientific Journal of Informatics, vol. 11, no. 1, pp. 127–138, Feb. 2024, doi: 10.15294/sji.v11i1.49038.
DOI: http://dx.doi.org/10.24014/ijaidm.v8i1.31750
Refbacks
- There are currently no refbacks.
Office and Secretariat:
Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau
Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942
Journal Indexing:
Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti | SINTA | Dimensions | ICI Index Copernicus
IJAIDM Stats