Data Mining on Women's Clothing Sales in Market Places with the K-Means Clustering Algorithm

Rizna Fitriana Dalimunthe, Raissa Amanda Putri

Abstract


Clothing is a necessity that must be used to cover the body with the main material made of fiber or textile so that the body is completely covered without gaps. Marketplace is an application or website that provides online buying and selling facilities from various sources. On the Shopee marketplace, there are many shops selling women's clothing from various groups and types of clothing. The K-Means Clustering algorithm in the research was applied to make it easier for sellers and buyers to find out what kind of women's clothing is currently selling well in the marketplace by grouping it into 3 clusters, namely the best-selling, best-selling, and least-selling. Research data was obtained from the Shopee marketplace with 3 variables, namely product price, number of sales, and buyer assessments of 4 types of women's clothing in the form of tunics, dresses, abayas/gamis, and shirts totaling 1200 data. The results of this research make it easier for buyers to make decisions and sellers to develop shop ideas.

Keywords


Data Mining, Women's Clothing, Marketplace, K-means Clustering

Full Text:

PDF

References


Persada, S. F., Nadlifatin, R., Wibowo, A. C. M., Setiyati, E. A., Belgiawan, P. F., Tri Prasetyo, Y., Ong, A. K. S., & Young, M. N Indonesia consumer preferences on attributes of marketplace platform: a conjoint analysis approach. Cogent Business and Management, 2024; 11(1). https://doi.org/10.1080/23311975.2024.2361868.

Rahmawati K. Pelatihan Penjualan Online Menggunakan Marketplace pada UKM di Bantul. DHARMA: Jurnal Pengabdian Masyarakat. 2021; 2(1): 79–85. https://doi.org/10.31315/dlppm.v2i1.4794

Hartono S, Hendrawan T, Pratama AI. “Malik” (Aplikasi Marketplace Busana Muslim). Infotech: Journal of Technology Information. 2023; 9(1): 31–6. https://doi.org/10.37365/jti.v9i1.154

Artaya IP, Purworusmiardi T. Efektifitas Marketplace dalam Meningkatkan Konsentrasi Pemasaran dan Penjualan Produk Bagi UMKM di Jawa Timur. Surabaya: Universitas Narotama Surabaya; 2019. https://doi.org/10.13140/RG.2.2.10157.95206

Safitri LA, Dewa CB. Analisa Pengaruh Masa New Normal pada Penjualan Online Melalui E-Commerce Shopee. Jurnal Manajemen Dayasaing. 2020; 22(2): 117–25. https://doi.org/10.23917/dayasaing.v22i2.12494

Lamis, S. F., Handayani, P. W., & Fitriani, W. R. Impulse buying during flash sales in the online marketplace. Cogent Business and Management. 2022; 9(1). https://doi.org/10.1080/23311975.2022.2068402

Marszałek, A., Bartkowiak, G., & Dąbrowska, A. Assessment of the effectiveness of modular clothing protecting against the cold based on physiological tests. International Journal of Occupational Safety and Ergonomics, 2018; 24(4), 534–545. https://doi.org/10.1080/10803548.2017.1376927

Potdar, B., McNeill, L. S., & McQueen, R. H. An investigation into the clothing repair behaviour of fashion-sensitive consumers. International Journal of Fashion Design, Technology and Education, 2023; 0(0), 1–15. https://doi.org/10.1080/17543266.2023.2285327

Kurniawan RA, Hasibuan MS, Piramida, Ramadhan RS. Penerapan Algoritma K-Means untuk Clustering Tempat Makan di Batubara. Cosie (Journal of Computer Science and Informatics Engineering). 2022; 1(1): 10–8. https://doi.org/10.55537/cosie.v1i1.27

Nasir J. Penerapan Data Mining Clustering Dalam Mengelompokan Buku Dengan Metode K-Means. Jurnal SIMETRIS. 2020; 11(2): 1–13. https://doi.org/10.24176/simet.v11i2.5482

Dewi AOP. Big Data di Perpustakaan dengan Memanfaatkan Data Mining. ANUVA. 2020; 4(2): 223–30. https://doi.org/10.14710/anuva.4.2.223-230

Riadi R, Mesran. Penerapan Data Mining Menggunakan Algoritma K-Means untuk Analisa Penjualan Parfume. Journal of Informatics, Electrical and Electronics Engineering. 2023; 2(4): 138–45. https://doi.org/10.47065/jieee.v2i4.1181

Plotnikova, V., Dumas, M., Nolte, A., & Milani, F. Designing a data mining process for the financial services domain. Journal of Business Analytics, 2023; 6(2), 140–166. https://doi.org/10.1080/2573234X.2022.2088412

Aditya A, Jovian I, Sari BN. Implementasi K-Means Clustering Ujian Nasional Sekolah Menengah Pertama di Indonesia Tahun 2018/2019. Jurnal Media Informatika Budidarma. 2020; 4(1): 51–8. https://doi.org/https://doi.org/10.30865/mib.v4i1.1784.

Cebecauer, M., Jenelius, E., Gundlegård, D., & Burghout, W. Revealing representative day-types in transport networks using traffic data clustering. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 2023; 0(0), 1–24. https://doi.org/10.1080/15472450.2023.2205020

Gustientiedina G, Adiya MH, Desnelita Y. Penerapan Algoritma K-Means untuk Clustering Data Obat-Obatan. Jurnal Nasional Teknologi Dan Sistem Informasi. 2019; 5(1): 17–24. https://doi.org/10.25077/teknosi.v5i1.2019.17-24

Tinendung IS, Zufria I. Pengelompokan Status Stunting pada Anak Menggunakan Metode K-Means Clustering. Jurnal Media Informatika Budidarma. 2023; 7(4): 2014–23. https://doi.org/10.30865/mib.v7i4.6908

Kim, H. S., Kim, S. K., & Kang, L. S. BIM performance assessment system using a K-Means clustering algorithm. Journal of Asian Architecture and Building Engineering, 2021; 20(1), 78–87. https://doi.org/10.1080/13467581.2020.1800471

Dinata RK, Safwandi, Hasdyna N, Azizah N. Analisis K-Means Clustering pada Data Sepeda Motor. Informatics Journal. 2020; 5(1): 10–7. https://doi.org/10.19184/isj.v5i1.17071

Guntara RG. Pemanfaatan Google Colab Untuk Aplikasi Pendeteksian Masker Wajah Menggunakan Algoritma Deep Learning YOLOv7. Jurnal Teknologi Dan Sistem Informasi Bisnis. 2023; 5(1): 55–60. https://doi.org/10.47233/jteksis.v5i1.750.




DOI: http://dx.doi.org/10.24014/ijaidm.v7i2.31384

Refbacks

  • There are currently no refbacks.


Office and Secretariat:

Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau

Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942

Click Here for Information


Journal Indexing:

Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti  | SINTA | Dimensions | ICI Index Copernicus 

IJAIDM Stats