Analysis of Social Vulnerability in Java Island using K-Medoids Algorithm with Variation of Distance Measurements (Euclidean, Manhattan, Minkowski)

Indah Manfaati Nur, Abdurakhman Abdurakhman

Abstract


The Social Vulnerability Index (SoVI) measurement to assess social vulnerability is only able to describe conditions in general, without being able to show which factors dominate the score. Therefore, the aim of this research is to fill this gap by applying a correlational approach with a clustering method to characterize the dominant factors of social vulnerability at the district level in Java and surrounding areas. The clustering method used in this study is the K-Medoids algorithm. This method is more powerful when there are outliers in the dataset used. In this study, we considered the use of 3 different distance methods, namely Euclidean distance, Manhattan distance, and Minkowski distance. As a result, the K-Medoids algorithm using Manhattan distance provides the best value based on the Davies Bouldin Index. This research found that social vulnerability exists in every region of Java Island and its surroundings.

Keywords


DBI; Distance; Medoids; Silhouette; Social Vulnerability

Full Text:

PDF

References


BNPB. Indonesia Disaster Data 2022. 2022 [Accessed: December, 4 2023]. https://bnpb.go.id/.

DLH. Official Press Release Regarding Potential 8.8 SR Earthquake and 20 m Tsunami in the South of Java Island. 2022 [Accessed: December 4, 2023]. https://dlh.kulonprogokab.go.id/detil/483/press-release-resmi-bmkg-terkait-potensi-gempa-bumi-88-sr-dan-tsunami-20-m-di-selatan-pulau-jawa.

UNISDR. Implementation of the Hyogo Framework for Action: Summary of Reports 2007-2013. United Nations Secretariat of the International Strategy of Disaster Reduction (UNISDR), Geneva, Switzerland. 2014 [Accessed: December 4, 2023]. https://www.preventionweb.net/files/32916_implementationofthehyogoframeworkfo.pdf

Cutter SL. Vulnerability to Environmental Hazards. Progress in Human Geography. 1996; 20(4): 529-539. DOI: https://doi.org/10.1177/030913259602000407

Wisner B, Blaikie P, Cannon T, Davis I. At Risk: Natural Hazards, People's Vulnerability, and Disaster. Routledge. 2023; (2). https://www.researchgate.net/publication/245532449_At_Risk_Natural_Hazards

Flanagan BE, Gregory EW, Hallisey EJ, Heitgerd JL, Lewis B. A Social Vulnerability Index for Disaster Management. Journal of Homeland Security and Emergency Management. 2008; 8(1): 1-22, Available at: https://atsdr.cdc.gov/placeandhealth/svi/img/pdf/Flanagan_2011_SVIforDisasterManagement-508.pdf

Cutter SL, Boruff BJ, Shirley WL. Social vulnerability to environmental hazards. Social Science Quarterly. 2003; 84(2): 242-261. DOI: https://doi.or/10.1111/1540-6237.8402002

Birkmann J, Setiadi NJ, Gebert N. Socio-economic Vulnerability at the Local Level in the Context of Tsunami Early War Evacuation Planning in the City of Padang, West Sumatra. Proceedings of the International Conference on Tsunami Warning (ICTW). Bali, Indonesia. 2008; 1-8.

Siagian TH, Purhadi P, Suhartono S, Ritonga H. Social vulnerability to natural hazards in Indonesia: driving factors and policy implications, Nat. Hazards. Journal of the International Society for the Prevention and Mitigation of Natural Hazards. 2014; 70(2): 1603-1617. DOI: https://doi.org/10.1007/s11069-013-0888-3

Nasution BI, Kurniawan R, Siagian TH, Fudholi A. Revisiting Social Vulnerability Analysis in Indonesia: An Optimized Spatial Fuzzy Clustering Approach. International Journal of Disaster Risk Reduction. 2020; 51: 1-11. DOI: https://doi.org/10.1016/j.ijdrr.2020.101801

Rufat S. Spectroscopy of Urban Vulnerability, Annals of the Association of American Geographers. 2014; 103(3): 505-525. DOI: https://doi.or/10.1080/00045608.2012.702485

Fadlurohman A, Nur IM. Pengelompokkan Provinsi di Indonesia Berdasarkan Indikator Perumahan dan Kesehatan Lingkungan Menggunakan Metode KMedoids. Prosiding Seminar Nasional Unimus. 2023; 6.

Aurora P, Deepali, Varshney S. Analysis of K-Means and K-Medoids Algorithm for Big Data. Procedia Computer Science. 2016; 78: 7-12.

Marlina D, Fernando A, Ramadhan A. Impelemntasi Algoritma K-Medoids dan K-Means untuk Pengelompokkan Wilayah Sebaran Cacat pada Anak. Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer dan Teknologi Informasi. 2018; 4(2): 64-71.

Riyanto B. Penerapan Algoritma K-Medoids Clustering Untuk Pengelompokkan Penyebaran Diare Di Kota Medan (Studi Kasus: Kantor Dinas Kesehatan Kota Medan). KOMIK (Konferensi Nasional Teknologi Informasi Dan Komputer). 2019; 3(1): 562–568.

Rofiqi AY. Clustering Berita Olahraga Berbahasa Indonesia Menggunakan Metode K-Medoid Bersyarat. Jurnal SimanteC. 2017; 6(1): 25–32.

Sangga, VAP. Perbandingan algoritma K-Means dan algoritma K-Medoids dalam pengelompokan komoditas peternakan di provinsi Jawa Tengah tahun 2015. Tugas Akhir Universitas Islam Indonesia, Yogyakarta. 2018.

Sinatrya NS, Wardhani LK. Analysis of K-Means and K- Medoids’s Performance Using Big Data Technology. 6th International Conference on Cyber and IT Service Management (CITSM). 2018; 1–5.

Damanik IIP, Solikhun S, Saragih IS, Parlina I, Suhendro D, Wanto A. Algoritma K-Medoids untuk Mengelompokkan Desa yang Memiliki Fasilitas Sekolah di Indonesia. Prosiding Seminar Nasional Riset Information Science (SENARIS). 2019; 1: 520–527.

Kurniati D, Fauzi MZ, Ripangi, Falegas A, Indria. Klasterisasi Daerah Rawan Gempa Bumi di Indonesia Menggunakan Algoritma K-Medoids: Clustering Of Earthquake Prone Areas In Indonesia Using K-Medoids Algorithm. Indonesian Journal of Machine Learning and Computer Science. 2021; 1(1): 47-57.

Kurniawan R, Nasution BI, Agustina N, Yuniarto B. Revisiting social vulnerability analysis in Indonesia data. Data in Brief. 2022; 40: 1-7. DOI: https://doi.or/10.1016/j.dib.2021.107743

Farissa RA, Mayasari R, Umaidah Y. Comparison of K-Means and K-Medoids Algorithms for Drug Data Clustering with Sillhouette Coefficient. Journal of Applied Informatics and Computing (JAIC). 2021; 5(2): 109-116.

Vercillis C. Business Intelligence, Data Mining and Optimization for Decision making. Milan: Wiley. 2009.

Han J, Kamber M. Data Mining, Concepts and Techniques. Waltham: Morgan Kauffman Publisher. 2017.

Setyawati AW. Implementation of Partitioning Around Medoid (PAM) Algorithm for Clustering High Schools in Yogyakarta Based on National Exam Absorption Score. Thesis. Yogyakarta: Faculty of Science and Technology, Sanata Darma University. 2017

Wira B, Budianto AE, Wiguna AS. Implementation of the K-Medoids Clustering Method to Find Patterns of New Student Study Program Selection in 2018 at Kanjuruhan University Malang. Journal of Applied Science & Technology. 2019; 1(3): 54-69.

H. Anton. Elementary Linear Algebra. Seventh Edition. New Jersey: Wiley. 1993

Ningrat FR, Maruddani DAI, Wuryandari T. Cluster Analysis with K-Means and Fuzzy C-Means Clustering Algorithms for Grouping Corporate Bond Data. Gaussian Journal. 2016; 5(4): 641-650.

Anggara M, Sujiani H, Nasution H. Selection of Distance Measure in K-Means Clustering for Member Grouping at Alvaro Fitness. Journal of Information Systems and Technology (JUSTIN). 2016; 1(1): 1-6.

Nelson KW. Choices and Opportunities: Low-Income Rental Housing in Indonesia. Review of Urban & Regional Development Studies. 1989; 1: 49-63. https://doi.org/10.1111/j.1467-940X.1989.tb00012.x

Mankiw GN. Macroeconomics. Seventh Edition. New York: Worth Publishers. 2010.




DOI: http://dx.doi.org/10.24014/ijaidm.v7i2.31111

Refbacks

  • There are currently no refbacks.


Office and Secretariat:

Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau

Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942

Click Here for Information


Journal Indexing:

Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti  | SINTA | Dimensions | ICI Index Copernicus 

IJAIDM Stats