Sentiment Analysis of Ampera Bridge as a National Tourism Destination
Abstract
Keywords
Full Text:
PDFReferences
E. B. Santoso and A. Nugroho, “Analisis sentimen calon presiden indonesia 2019 berdasarkan komentar publik di facebook,” J. Eksplora Inform., vol. 9, no. 1, pp. 60–69, 2019, doi: https://doi.org/10.30864/eksplora.v9i1.254.
D. Darwis, N. Siskawati, and Z. Abidin, “Penerapan Algoritma Naive Bayes Untuk Analisis Sentimen Review Data Twitter Bmkg Nasional,” J. Tekno Kompak, vol. 15, no. 1, pp. 131–145, 2021, [Online]. Available: https://ejurnal.teknokrat.ac.id/index.php/teknokompak/article/view/744
A. K. Fauziyyah, “Analisis sentimen pandemi Covid19 pada streaming Twitter dengan text mining Python,” J. Ilm. SINUS, vol. 18, no. 2, pp. 31–42, 2020, [Online]. Available: https://p3m.sinus.ac.id/jurnal/index.php/e-jurnal_SINUS/article/view/491
E. Halim, R. Purba, and A. Andri, “Consumer Opinion Extraction Using Text Mining for Product Recommendations On E-Commerce,” … Artif. Intell. Data Min. …, 2021, [Online]. Available: https://caritulisan.com/media/397625-consumer-opinion-extraction-using-text-m-f2bd5311.pdf
N. C. Lengkong, O. Safitri, S. Machsus, Y. R. Putra, and ..., “Analisis Sentimen Penerapan Psbb Di Dki Jakarta Dan Dampaknya Terhadap Pergerakan Ihsg,” J. Teknokr., vol. 15, no. 1, pp. 20–25, 2021, doi: DOI: https://doi.org/10.33365/jti.v15i1.866.
G. Hagerer, W. S. Leung, Q. Liu, H. Danner, and ..., “A Case Study and Qualitative Analysis of Simple Cross-Lingual Opinion Mining,” arXiv Prepr. arXiv …, 2021, [Online]. Available: https://arxiv.org/abs/2111.02259
A. P. Giovani, A. Ardiansyah, and T. Haryanti, “Analisis Sentimen Aplikasi Ruang Guru Di Twitter Menggunakan Algoritma Klasifikasi,” J. Teknoinfo, vol. 14, no. 2, pp. 116–124, 2020, doi: DOI: https://doi.org/10.33365/jti.v14i2.679.
N. M. K. Saeed, N. A. Helal, N. L. Badr, and T. F. Gharib, “The Impact of Spam Reviews on Feature-based Sentiment Analysis,” in Proceedings - 2018 13th International Conference on Computer Engineering and Systems, ICCES 2018, Z. A.M., T. M., E.-K. M.W., S. A., B. E.-D. A.M., and A. H.M., Eds., Information Systems Department, Ain Shams University, Faculty of Computer and Information Sciences, Cairo, Egypt: Institute of Electrical and Electronics Engineers Inc., 2019, pp. 633–639. doi: 10.1109/ICCES.2018.8639343.
H. Tuhuteru, “Analisis Sentimen Masyarakat Terhadap Pembatasan Sosial Berksala Besar Menggunakan Algoritma Support Vector Machine,” J. Inf. Syst. Dev., vol. 5, no. 2, pp. 7–13, 2020, [Online]. Available: https://ejournal.medan.uph.edu/index.php/isd/article/view/381
S. Samsir, A. Ambiyar, U. Verawardina, and ..., “Analisis Sentimen Pembelajaran Daring Pada Twitter di Masa Pandemi COVID-19 Menggunakan Metode Naïve Bayes,” J. Media Inform. Budidarma, vol. 5, no. 1, pp. 157–163, 2021, doi: DOI: http://dx.doi.org/10.30865/mib.v5i1.2580.
A. Rácz, D. Bajusz, R. A. Miranda-Quintana, and K. Héberger, “Machine learning models for classification tasks related to drug safety,” Mol. Divers., vol. 25, no. 3, pp. 1409–1424, 2021, doi: 10.1007/s11030-021-10239-x.
N. Tsapatsoulis and C. Djouvas, “Opinion mining from social media short texts: Does collective intelligence beat deep learning?,” Front. Robot. AI, 2019, doi: 10.3389/frobt.2018.00138.
S. Y. Kim, K. Ganesan, P. Dickens, and S. Panda, “Public sentiment toward solar energy—opinion mining of twitter using a transformer-based language model,” Sustainability, 2021, [Online]. Available: https://www.mdpi.com/1018186
M. Z. Asghar, A. Khan, S. R. Zahra, S. Ahmad, and F. M. Kundi, “Aspect-based opinion mining framework using heuristic patterns,” Cluster Comput., 2019, doi: 10.1007/s10586-017-1096-9.
R. Mahendrajaya and G. A. Buntoro, “Analisis Sentimen Pengguna Gopay Menggunakan Metode Lexicon Based Dan Support Vector Machine,” Jounal Komputek, vol. 3, no. 2, pp. 52–63, 2019, doi: DOI: 10.24269/jkt.v3i2.270.
M. Heydari and B. Teimourpour, “Persian Opinion Mining:A Networked Analysis Approach,” in 7th International Conference on Web Research, ICWR 2021, Tarbiat Modares University, School of Industrial and System Engineering, MSc Graduate in Network Science, Tehran, Iran: Institute of Electrical and Electronics Engineers Inc., 2021, pp. 142–149. doi: 10.1109/ICWR51868.2021.9443158.
M. I. Fikri, T. S. Sabrila, and Y. Azhar, “Perbandingan Metode Naïve Bayes dan Support Vector Machine pada Analisis Sentimen Twitter,” Smatika J., vol. 10, no. 2, pp. 71–76, 2020, doi: https://doi.org/10.32664/smatika.v10i02.455.
A. V. M. Kumar and N. K. AN, “Sentiment analysis using robust hierarchical clustering algorithm for opinion mining on movie reviews-based applications,” Inter J Innov. Technol Explor. …, 2019, [Online]. Available: https://www.researchgate.net/profile/Mohan-Kumar-Av/publication/343878502_Sentiment_Analysis_Using_Robust_Hierarchical_Clustering_Algorithm_for_Opinion_Mining_On_Movie_Reviews-Based_Applications/links/5fe34cea92851c13feb1fe7b/Sentiment-Analysis-Using-Robu
Y. A. Singgalen, “Pemilihan metode dan algoritma dalam analisis sentimen di media sosial: sistematic literature review,” J. Inf. Syst. Informatics, vol. 3, no. 2, pp. 278–302, 2021, doi: DOI: 10.33557/journalisi.v3i2.125.
Q. Wan, X. Xu, J. Zhuang, and B. Pan, “A sentiment analysis-based expert weight determination method for large-scale group decision-making driven by social media data,” Expert Syst. Appl., vol. 185, 2021, doi: 10.1016/j.eswa.2021.115629.
K. Karunia, A. E. Putri, M. D. Fachriani, and M. H. Rois, “Evaluation of the Effectiveness of Neural Network Models for Analyzing Customer Review Sentiments on Marketplace,” Public Research Journal of Engineering, Data Technology and Computer Science, vol. 2, no. 1, pp. 52–59, Apr. 2024, doi: 10.57152/predatecs.v2i1.1100.
DOI: http://dx.doi.org/10.24014/ijaidm.v7i2.30132
Refbacks
- Sentiment Analysis of Ampera Bridge as a National Tourism Destination
- Sentiment Analysis of Ampera Bridge as a National Tourism Destination
- Sentiment Analysis of Ampera Bridge as a National Tourism Destination
- Sentiment Analysis of Ampera Bridge as a National Tourism Destination
- Sentiment Analysis of Ampera Bridge as a National Tourism Destination
- Sentiment Analysis of Ampera Bridge as a National Tourism Destination
Office and Secretariat:
Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau
Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942
Journal Indexing:
Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti | SINTA | Dimensions | ICI Index Copernicus
IJAIDM Stats