Comparison Analysis of HSV Method, CNN Algorithm, and SVM Algorithm in Detecting the Ripeness of Mangosteen Fruit Images

M. Khairul Anam, Sumijan Sumijan, Karfindo Karfindo, Muhammad Bambang Firdaus

Abstract


Mangosteen contains a substance known as Xanthone, a phytochemical compound with the distinctive red component in mangosteen that is known for its properties as an anticancer, antibacterial, and anti-inflammatory agent. Additionally, Xanthone has the potential to strengthen the immune system, promote overall health, support mental well-being, maintain microbial balance in the body, and improve joint flexibility. The mangosteen fruit is consumable when it reaches maturity, displaying a dark purplish-black color. Besides the edible part of the fruit, the peel also possesses remarkable medicinal properties. To detect whether the fruit is ripe or not, this research employs image processing techniques. The study utilizes the HSV (Hue, Saturation, and value) color space method, CNN (Convolutional Neural Network) algorithm, and SVM (Support Vector Machine) algorithm. These methods and algorithms are chosen for their relatively high accuracy levels. The dataset used in this research is obtained from mangosteen datasets available on Kaggle. The results of this study indicate that the HSV method achieved an accuracy of 86.6%, SVM achieved an accuracy of 87%, and CNN achieved an accuracy of 91.25%. From the achieved accuracies, it is evident that the CNN algorithm yields higher accuracy compared to the others.

Keywords


CNN; Detection; HSV; Mangosteen; SVM

Full Text:

PDF

References


N. Kadek et al., “Manfaat Manggis (Garcinia mangostana) Sebagai Antioksidan,” JCPS (Journal of Current Pharmaceutical Sciences), vol. 6, no. 1, pp. 540–549, 2022.

B. Putra, “Pemanfaatn Kulit Manggis Menjadi Minuman Tradisional Di Desa Buat Kabupaten Bungo,” Dinamisia: Jurnal Pengabdian Kepada Masyarakat, vol. 5, no. 1, pp. 60–64, Nov. 2020, doi: 10.31849/dinamisia.v5i1.4231.

H. Abadi, S. F. Hanum, and I. A. Buulolo, “Formulasi dan Uji Efektivitas Ekstrak Etanol Kulit Buah Manggis (Garcinia mangostana L.) Sebagai Pelembab Bibir,” Jurnal Dunia Farmasi, vol. 4, no. 2, pp. 76–81, 2020, doi: 10.33085/jdf.v4i2.4631.

R. N. Whidhiasih, S. Guritman, and P. T. Suprio, “Identifikasi Tahap Kematangan Buah Manggis Ekspor dan Lokal Berdasarkan Warna dan Tekstur Menggunakan Fuzzy Neural Network,” Jurnal Teknologi Industri Pertanian, vol. 22, no. 2, pp. 82–91, 2012.

F. Xiao, H. Wang, Y. Xu, and R. Zhang, “Fruit Detection and Recognition Based on Deep Learning for Automatic Harvesting: An Overview and Review,” Agronomy, vol. 13, no. 6, pp. 1–32, Jun. 2023, doi: 10.3390/agronomy13061625.

Yuhandri, A. Ramadhanu, and H. Syahputra, “Pengenalan Teknologi Pengolahan Citra Digital (Digital Image Processing) untuk Santri di Rahmatan Lil’alamin International Boarding School,” Communnity Development Journal, vol. 3, no. 2, pp. 1239–1244, 2022, doi: 10.31004/cdj.v3i2.5868.

R. A. Saputra, D. Puspitasari, and T. Baidawi, “Deteksi Kematangan Buah Melon dengan Algoritma Support Vector Machine Berbasis Ekstraksi Fitur GLCM,” Jurnal Infortech, vol. 4, no. 2, pp. 200–206, 2022, doi: 10.31294/infortech.v4i2.14436.g5734.

Mukhofifah and E. Nurraharjo, “Sistem Deteksi kematangan buah Alpukat Menggunakan Metode Pengolahan Citra,” Dinamika Informatika, vol. 11, no. 1, pp. 12–23, 2019, doi: 10.35315/informatika.v11i1.8144.

R. Rahmadewi, G. L. Sari, and H. Firmansyah, “Pendeteksian Kematangan Buah Jeruk Dengan Fitur Citra Kulit Buah Menggunakan Transformasi Ruang Warna HSV,” Jurnal Teknik Elektro dan Vokasional, vol. 5, no. 1, pp. 166–171, 2019, doi: 10.24036/jtev.v5i1.1.107560.

R. Pratama, A. F. Assagaf, and F. Tempola, “Deteksi kematangan Buah Tomat Berdasarkan Fitur Warna Menggunakan Metode Transformasi Ruang Warna HIS,” Jurnal Informatika dan Komputer, vol. 2, no. 2, pp. 81–86, 2019, doi: 10.33387/jiko.v2i2.1318.

M. Z. Andrekha and Y. Huda, “Deteksi Warna Manggis Menggunakan Pengolahan Citra dengan Opencv Python,” Vocational Teknik Electronika dan Informatika, vol. 9, no. 4, pp. 27–33, 2021, doi: 10.24036/voteteknika.v9i4.114251.

A. Kurniawan Saputro and D. N. Purnamasari, “Identification of Plastic Type Based on Light Reflection in HSV Color Space Conversion,” Jurnal SimanteC, vol. 11, no. 1, pp. 107–114, 2022, doi: 10.21107/simantec.v11i1.19732.

M. R. V. Aditya, N. L. Husni, D. A. Pratama, and A. S. Handayani, “Penerapan Sistem Pengolahan Citra Digital Pendeteksi Warna pada Starbot,” Jurnal Teknika, vol. 14, no. 2, pp. 185–191, 2020.

K. Azmi, S. Defit, and Sumijan, “Implementasi Convolutional Neural Network (CNN) Untuk Klasifikasi Batik Tanah Liat Sumatera Barat,” Jurnal Unitek, vol. 16, no. 1, pp. 28–40, 2023, doi: 10.52072/unitek.v16i1.504.

M. R. Efrian and U. Latifa, “Image Recognition Berbasis Convolutional Neural Network (CNN) untuk Mendeteksi Penyakit Kulit pada Manusia,” Jurnal POLEKTRO: Jurnal Power Elektronik, vol. 11, no. 1, pp. 276–282, 2022.

B. Qiang, R. Chen, M. Zhou, Y. Pang, Y. Zhai, and M. Yang, “Convolutional neural networks-based object detection algorithm by jointing semantic segmentation for images,” Sensors (Switzerland), vol. 20, no. 18, pp. 1–14, Sep. 2020, doi: 10.3390/s20185080.

C. R. Kotta, D. Paseru, and M. Sumampouw, “Implementation of Convolutional Neural Network Method to Detect Diseases in Tomato Leaf Image,” Jurnal Pekommas, vol. 7, no. 2, pp. 123–132, 2022, doi: 10.56873/jpkm.v7i2.4961.

S. A. Damayanti, A. Arkadia, and D. S. Prasvita, “Klasifikasi Buah Mangga Badami Untuk Menentukan Tingkat Kematangan dengan Metode CNN,” in Seminar Nasional Mahasiswa Ilmu Komputer dan Aplikasinya (SENAMIKA) Jakarta-Indonesia, 2021, pp. 158–165.

D. R. Sya’bani, A. Hamzah, and E. Susanti, “Klasifikasi Buah Segar dan Busuk Menggunakan Algoritma Convolutional Neural Network dengan TFLITE Sebagai Media Penerapan Model Machine Learning,” in Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST), 2022, pp. 7–16. doi: 10.34151/prosidingsnast.v8i1.4180.

R. A. Saputra, D. Puspitasari, and T. Baidawi, “Deteksi Kematangan Buah Melon dengan Algoritma Support Vector Machine Berbasis Ekstraksi Fitur GLCM,” Jurnal Infortech, vol. 4, no. 2, pp. 200–206, 2022, doi: 10.31294/infortech.v4i2.14436.g5734.

B. M. Alfaruq, D. Erwanto, and I. Yanuartanti, “Klasifikasi Kematangan Buah Tomat Dengan Metode Support Vector Machine,” Generation Journal, vol. 7, no. 3, pp. 64–72, 2023, doi: 10.29407/gj.v7i3.21092.

N. E. R. Pah, A. Y. Mauko, and S. A. S. Mola, “Extraction of HSV Color and Shape Characteristics of Moment Invariant for Classification of Red Apples,” Jurnal Komputer dan Informatika, vol. 9, no. 2, pp. 142–153, Sep. 2021, doi: 10.35508/jicon.v9i2.5043.

G. C. Setyawan and Y. M. S. Mendrofa, “Segmentasi Citra Gesture Tangan Berbasis Ruang Warna HSV,” Infact UKRIM, vol. 6, no. 2, pp. 35–52, 2021.

N. H. Ovirianti, M. Zarlis, and H. Mawengkang, “Support Vector Machine Using A Classification Algorithm,” Jurnal dan Penelitian Teknik Informatika, vol. 7, no. 3, pp. 2103–2107, 2022, doi: 10.33395/sinkron.v7i3.

S. Huang, C. A. I. Nianguang, P. Penzuti Pacheco, S. Narandes, Y. Wang, and X. U. Wayne, “Applications of support vector machine (SVM) learning in cancer genomics,” Cancer Genomics Proteomics, vol. 15, no. 1, pp. 41–51, Jan. 2018, doi: 10.21873/cgp.20063.

A. A. Kasim and M. Sudarsono, “Algoritma Support Vector Machine (SVM) untuk Klasifikasi Ekonomi Penduduk Penerima Bantuan Pemerintah di Kecamatan Simpang Raya Sulawesi Tengah,” in Seminar Nasional APTIKOM, 2019, pp. 568–573.

Ishak, I. Amal, M. Muhammad, and A. B. Kaswar, “Sistem Pendeteksi Kematangan Buah Tomat Berbasis Pengolahan Citra Digital Menggunakan Metode Jaringan Syaraf Tiruan,” Jurnal MediaTIK: Jurnal Media Pendidikan Teknik Informatika dan Komputer, vol. 5, no. 1, pp. 65–69, 2022, doi: 10.26858/jmtik.v5i1.33214.

S. Sanjaya, “Aplikasi Pengenalan Tingkat Kematangan Buah Tomat Menggunakan Fitur Warna Hsv Berbasis Android,” Jurnal TEKNOINFO, vol. 16, no. 1, pp. 26–33, 2022, doi: 10.33365/jti.v16i1.1489.

M. Utami, J. Andika, and S. Attamimi, “Artificial Intelligence For Banana’s Ripeness Detection Using Conventional Neural Network Algorithm,” Jurnal Teknologi Elektro, vol. 12, no. 2, pp. 73–79, Jul. 2021, doi: 10.22441/jte.2021.v12i2.005.

Y. B. E. Purba, N. F. Saragih, A. P. Silalahi, S. Sitepu, and A. Gea, “Perancangan Alat Pendeteksi Kematangan Buah Nanas Dengan Menggunakan Mikrokontroler Dengan Metode Convolutional Neural Network (CNN),” Jurnal Ilmiah Teknik Informatika, vol. 2, no. 1, pp. 13–21, 2022, [Online]. Available: http://ojs.fikom-methodist.net/index.php/METHOTIKA

A. Z. Seknun, A. Kusuma, A. Sabrina, A. D. C. Putri, M. Raehan, and P. Rosyani, “Klasifikasi Tingkat Kematangan Buah Tomat dengan Variasi Model Warna Menggunakan Support Vector Machine,” Jurnal Ilmu Komputer dan Pendidikan, vol. 1, no. 2, pp. 203–210, 2023, [Online]. Available: https://journal.mediapublikasi.id/index.php/logic




DOI: http://dx.doi.org/10.24014/ijaidm.v7i2.29739

Refbacks

  • There are currently no refbacks.


Office and Secretariat:

Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau

Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942

Click Here for Information


Journal Indexing:

Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti  | SINTA | Dimensions | ICI Index Copernicus 

IJAIDM Stats