Tree Damage Type Classification Based on Forest Health Monitoring Using Mobile-Based Convolutional Neural Network

Faishal Hariz Makaarim Gandadipoera, Rico Andrian, rahmat safei

Abstract


One of the fundamental parts of surveying forest health conditions with Forest Health Monitoring (FHM) is to visually assess the damage experienced by trees under certain conditions. This visual assessment can be facilitated using a Convolutional Neural Network (CNN) which involves building the MobileNetV2 model architecture. The model was trained using 1600 image data with 16 classes. The image data was pre-processed by resizing it to 224x224. The data was categorized into three categories: 80% was allocated for training, 10% for validation, and testing with 10% also. Training was done by changing the values from batches with a maximum of 100 epochs. The model was then incorporated into a mobile application using TensorFlow Lite and testing the application gave satisfactory results.  The model results get the best accuracy rate of 98.75% and a loss of 0.0497. This research concludes that the classification of tree damage types based on FHM with CNN can be done. For accurate results, the image provided by the user must be clear and reflect the actual damage observed on the tree.

Keywords


Convolutional Neural Network; Forest Health Monitoring; MobileNetV2; Mobile Application; TensorFlow Lite

References


R. Safe’i, A. Darmawan, A. R. Irawati, A. Y. Pangestu, E. R. Arwanda, and A. N. Syahiib, “Cluster analysis on forest health conditions in Lampung Province,” International Journal of Design & Nature and Ecodynamics, vol. 17, no. 2, pp. 257–262, Apr. 2022, doi: 10.18280/ijdne.170212.

D. Pertiwi, R. Safe’i, H. Kaskoyo, and I. Indriyanto, “IDENTIFIKASI TIPE KERUSAKAN POHON MENGGUNAKAN METODE FOREST HEALTH MONITORING (FHM),” Perennial (Makassar), vol. 15, no. 1, p. 1, Jul. 2019, doi: 10.24259/perennial.v15i1.6033.

F. Ardiansyah and R. Safe’i, “Analysis of Changes in Health of Coastal Mangrove Forest on the East Coast of Lampung,” IOP Conference Series: Earth and Environmental Science, vol. 755, no. 1, p. 012028, Apr. 2021, doi: 10.1088/1755-1315/755/1/012028.

A. Howard et al., “MobileNets: efficient convolutional neural networks for mobile vision applications,” arXiv (Cornell University), Apr. 2017, doi: 10.48550/arxiv.1704.04861.

Y. Gulzar, “Fruit Image Classification Model Based on MobileNetV2 with Deep Transfer Learning Technique,” Sustainability (Basel), vol. 15, no. 3, p. 1906, Jan. 2023, doi: 10.3390/su15031906.

I. R. Maulana, R. Safe’i, I. G. Febryano, H. Kaskoyo, and A. Rahmat, “The relationship between the health of mangrove forests and the level of community welfare,” IOP Conference Series: Earth and Environmental Science, vol. 1027, no. 1, p. 012033, May 2022, doi: 10.1088/1755-1315/1027/1/012033.

R. Safe’i, E. N. Puspita, and R. Hilmanto, “Assessment of tree vitality as an indicator of monitoring the health condition of community forest in agroforestry patterns,” Folia Forestalia Polonica, vol. 64, no. 4, pp. 206–213, Dec. 2022, doi: 10.2478/ffp-2022-0020.

K. Shridhar, F. Laumann, and M. Liwicki, “A Comprehensive guide to Bayesian Convolutional Neural Network with Variational Inference,” arXiv (Cornell University), Jan. 2019, [Online]. Available: https://arxiv.org/pdf/1901.02731.pdf

N. N. K. Arzar, N. Sabri, N. F. M. Johari, A. A. Shari, M. R. M. Noordin, and S. Ibrahim, “Butterfly Species Identification using Convolutional Neural Network (CNN),” Malaysia: IEEE International Conference on Automatic Control and Intelligent Systems, Jun. 2019, doi: 10.1109/i2cacis.2019.8825031.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “MobileNetV2: Inverted residuals and linear bottlenecks,” arXiv (Cornell University), Jan. 2018, doi: 10.48550/arxiv.1801.04381.

F. D. Adhinata, N. A. F. Tanjung, W. Widayat, G. R. Pasfica, and F. R. Satura, “Comparative study of VGG16 and MobileNetV2 for masked face Recognition,” JITEKI : Jurnal Ilmiah Teknik Elektro Komputer Dan Informatika, vol. 7, no. 2, p. 230, Jul. 2021, doi: 10.26555/jiteki.v7i2.20758.

S. Tang, S. Yuan, and Y. Zhu, “Data preprocessing techniques in convolutional neural network based on fault diagnosis towards rotating machinery,” IEEE Access, vol. 8, pp. 149487–149496, Jan. 2020, doi: 10.1109/access.2020.3012182.

J. Ma, Y. Ushiku, and M. Sagara, “The effect of improving annotation quality on object detection datasets: A preliminary study,” 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Jun. 2022, doi: 10.1109/cvprw56347.2022.00532.

A. Julianto, A. Sunyoto, and F. W. Wibowo, “Optimasi Hyperparameter Convolutional Neural Network Untuk Klasifikasi Penyakit Tanaman Padi,” Jurnal TEKNIMEDIA, vol. 3, no. 2, pp. 98–105, Dec. 2022, doi: 10.46764/teknimedia.v3i2.77.

M. Feurer and F. Hutter, “Hyperparameter Optimization,” in The Springer series on challenges in machine learning, 2019, pp. 3–33. doi: 10.1007/978-3-030-05318-5_1.

M. Gandini, E. Bagli, and G. Visani, “Metrics for Multi-Class Classification: an Overview,” arXiv (Cornell University), Aug. 2020, doi: 10.48550/arxiv.2008.05756.

R. Dávid et al., “TensorFlow Lite Micro: Embedded machine learning on TinyML Systems.,” arXiv (Cornell University), Oct. 2020, [Online]. Available: https://arxiv.org/pdf/2010.08678

P. Jindal, “A Research Paper on a Progress Tracking Application using Flutter and Firebase,” International Journal for Research in Applied Science and Engineering Technology, vol. 9, no. 5, pp. 1981–1985, May 2021, doi: 10.22214/ijraset.2021.34712.

M. M. Reda, R. Suwwan, S. Alkafri, Y. Rashed, and T. Shanableh, “AgroAID: a mobile app system for visual classification of plant species and diseases using deep learning and TensorFlow Lite,” Informatics (Basel), vol. 9, no. 3, p. 55, Jul. 2022, doi: 10.3390/informatics9030055.

A. Y. Pangestu, R. Safe’i, A. Darmawan, H. Kaskoyo, and R. Andrian, “Black-box testing on web-GIS of forest health monitoring using equivalence partitioning techniques,” AIP Conference Proceedings, Jan. 2022, doi: 10.1063/5.0104748.

Y. Xue, “An Overview of Overfitting and its Solutions,” Journal of Physics: Conference Series, vol. 1168, p. 022022, Feb. 2019, doi: 10.1088/1742-6596/1168/2/022022.




DOI: http://dx.doi.org/10.24014/ijaidm.v7i2.29421

Refbacks

  • There are currently no refbacks.


Office and Secretariat:

Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau

Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942

Click Here for Information


Journal Indexing:

Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti  | SINTA | Dimensions | ICI Index Copernicus 

IJAIDM Stats