Modeling The Prediction of Hard Drive Capacity Usage on Server Computers Based on Linear Regression

Wahyuni Wahyuni, Pitrasacha Adytia, Siti Namira Rizqi Astin, Kelik Sussolaikah, Fadly Kasim

Abstract


Bank of XYZ has a server computer that is used to run several information technology application services such as ATMs and others. Because the server computer uses a hard drive, the full hard drive can cause problems with the service not operating properly. Full hard drives occur without being noticed. So that this makes the computer server problematic, resulting in customer dissatisfaction and decreased customer loyalty to Bank XYZ. To solve the problem at XYZ Bank, one of the machine learning algorithms can be used to predict hard drive capacity. The method used to predict hard drive storage or usage. The machine learning algorithm used is Multiple Linear Regression. The results of this study show that the linear regression model successfully predicts the use of hard drive capacity on server computers with a sufficient level of accuracy.But it is still not optimal because only a few servers can be predicted. For further research, may consider using the LSTM (Long Short-Term Memory) algorithm. LSTM is an algorithm that is well-suited for sequence prediction problems, including time series forecasting.

Keywords


CRISP-DM; Hard Drive Capacity; Linear Regression; Machine Learning; Prediction

Full Text:

PDF

References


F. D. Putra, PSIKOJURNALISTIK ANALISIS WACANA KOMPAS.COM TENTANG PERILAKU KOMUNIKASI PEMBUAT KEBIJAKAN KABINET I. Guepedia, 2021.

P. P. Indonesia, : UNDANG-UNDANG TENTANG PERUBAHAN ATAS UNDANG-UNDANG NOMOR 7 TAHUN 1992 TENTANG PERBANKAN. Indonesia: LN. 1998/ No. 182, TLN NO. 3790, LL SETNEG : 32 HLM, 1998.

Widada, Kitab Teknisi Komputer, Laptop, Printer, dan Monitor untuk Pemula. Yogyakarta: MediaKom, 2014.

S. Farizy and E. S. Harianja, “Pengembangan Media Penyimpanan dalam Sistem Berkas,” Jurnal Ilmu Komputer, vol. 3, no. 2, pp. 5–9, Apr. 2020.

X. D. Hoang and N. T. Nguyen, “Detecting Website Defacements Based on Machine Learning Techniques and Attack Signatures,” Computers, vol. 8, no. 2, p. 35, May 2019, doi: 10.3390/computers8020035.

D. Maulud and A. M. Abdulazeez, “A Review on Linear Regression Comprehensive in Machine Learning,” Journal of Applied Science and Technology Trends, vol. 1, no. 4, pp. 140–147, Dec. 2020, doi: 10.38094/jastt1457.

J. D. Jobson, “Multiple Linear Regression,” in Applied Multivariate Data Analysis: Regression and Experimental Design, J. D. Jobson, Ed., New York, NY: Springer New York, 1991, pp. 219–398. doi: 10.1007/978-1-4612-0955-3_4.

M. Piekutowska et al., “The Application of Multiple Linear Regression and Artificial Neural Network Models for Yield Prediction of Very Early Potato Cultivars before Harvest,” Agronomy, vol. 11, p. 885, 2021, [Online]. Available: https://api.semanticscholar.org/CorpusID:235567813

D. Alita, A. D. Putra, and D. Darwis, “Analysis of classic assumption test and multiple linear regression coefficient test for employee structural office recommendation,” IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 2021, [Online]. Available: https://api.semanticscholar.org/CorpusID:238781028

P. Purwanto and S. Sumardi, “Perancangan Klasifikasi Tanaman Herbal Menggunakan Transfer Learning Pada Algoritma Convolutional Neural Network (CNN),” Jurnal Ilmiah Infokam, vol. 18, no. 2, pp. 105–118, Dec. 2022, doi: 10.53845/infokam.v18i2.328.

K. Tock, “Google CoLaboratory as a Platform for Python Coding with Students,” in RTSRE Proceedings, Our Solar Siblings, Dec. 2019. doi: 10.32374/rtsre.2019.013.

J. Li, R. J. Stones, G. Wang, X. Liu, Z. Li, and M. Xu, “Hard drive failure prediction using Decision Trees,” Reliab Eng Syst Saf, vol. 164, pp. 55–65, Aug. 2017, doi: 10.1016/j.ress.2017.03.004.

J. Li et al., “Hard Drive Failure Prediction Using Classification and Regression Trees,” in 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, IEEE, Jun. 2014, pp. 383–394. doi: 10.1109/DSN.2014.44.

C. Schröer, F. Kruse, and J. M. Gómez, “A Systematic Literature Review on Applying CRISP-DM Process Model,” Procedia Comput Sci, vol. 181, pp. 526–534, 2021, doi: 10.1016/j.procs.2021.01.199.

J. S. Saltz, “CRISP-DM for Data Science: Strengths, Weaknesses and Potential Next Steps,” in 2021 IEEE International Conference on Big Data (Big Data), IEEE, Dec. 2021, pp. 2337–2344. doi: 10.1109/BigData52589.2021.9671634.

Y. Suhanda, I. Kurniati, and S. Norma, “Penerapan Metode Crisp-DM Dengan Algoritma K-Means Clustering Untuk Segmentasi Mahasiswa Berdasarkan Kualitas Akademik,” Jurnal Teknologi Informatika dan Komputer, vol. 6, no. 2, pp. 12–20, Sep. 2020, doi: 10.37012/jtik.v6i2.299.

Y. A. Singgalen, “Analisis Sentimen dan Sistem Pendukung Keputusan Menginap di Hotel Menggunakan Metode CRISP-DM dan SAW,” Journal of Information System Research (JOSH), vol. 4, no. 4, pp. 1343–1353, Jul. 2023, doi: 10.47065/josh.v4i4.3917.

F. N. Dhewayani, D. Amelia, D. N. Alifah, B. N. Sari, and M. Jajuli, “Implementasi K-Means Clustering untuk Pengelompokkan Daerah Rawan Bencana Kebakaran Menggunakan Model CRISP-DM,” Jurnal Teknologi dan Informasi, vol. 12, no. 1, pp. 64–77, Mar. 2022, doi: 10.34010/jati.v12i1.6674.

A. Pambudi, “PENERAPAN CRISP-DM MENGGUNAKAN MLR K-FOLD PADA DATA SAHAM PT. TELKOM INDONESIA (PERSERO) TBK (TLKM) (STUDI KASUS: BURSA EFEK INDONESIA TAHUN 2015-2022),” Jurnal Data Mining dan Sistem Informasi, vol. 4, no. 1, p. 1, Mar. 2023, doi: 10.33365/jdmsi.v4i1.2462.

J. Brownlee, Data Preparation For Machine Learning, V1.2. 2020.

O. Masmoudi, M. Jaoua, A. Jaoua, and S. Yacout, “Data Preparation in Machine Learning for Condition-based Maintenance,” Journal of Computer Science, vol. 17, no. 6, pp. 525–538, Jun. 2021, doi: 10.3844/jcssp.2021.525.538.

R. Pratama, M. I. Herdiansyah, D. Syamsuar, and A. Syazili, “Prediksi Customer Retention Perusahaan Asuransi Menggunakan Machine Learning,” Jurnal Sisfokom (Sistem Informasi dan Komputer), vol. 12, no. 1, pp. 96–104, Mar. 2023, doi: 10.32736/sisfokom.v12i1.1507.

Y. Christian and K. O. Y. R. Qi, “Penerapan K-Means pada Segmentasi Pasar untuk Riset Pemasaran pada Startup Early Stage dengan Menggunakan CRISP-DM,” JURIKOM (Jurnal Riset Komputer), vol. 9, no. 4, p. 966, Aug. 2022, doi: 10.30865/jurikom.v9i4.4486.

S. Fachrurrazi, “PERAMALAN PENJUALAN OBAT MENGGUNAKAN METODE SINGLE EXPONENTIAL SMOOTHING PADA TOKO OBAT BINTANG GEURUGOK,” TECHSI Teknik Informatika, vol. 6, no. 1, pp. 19–30, Apr. 2015.

P. Goodwin and R. Lawton, “On the asymmetry of the symmetric MAPE,” Int J Forecast, vol. 15, no. 4, pp. 405–408, Oct. 1999, doi: 10.1016/S0169-2070(99)00007-2.

I. P. Sutawinayam, I. N. G. A. Astawa, and N. K. D. Hariyanti, “PERBANDINGAN METODE JARINGAN SARAF TIRUAN PADA PERAMALAN CURAH HUJAN,” Logic : Jurnal Rancang Bangun dan Teknologi, vol. 17, no. 2, pp. 92–97, Oct. 2017.

F. Ahmad, “PENENTUAN METODE PERAMALAN PADA PRODUKSI PART NEW GRANADA BOWL ST Di PT.X,” JISI: Jurnal Integrasi Sistem Industri, vol. 7, no. 1, p. 31, May 2020, doi: 10.24853/jisi.7.1.31-39.

D. Purwanti and J. Purwadi, “Metode Brown’s Double Exponential Smoothing dalam Peramalan Laju Inflasi di Indonesia,” Jurnal Ilmiah Matematika, vol. 6, no. 2, p. 54, Oct. 2019, doi: 10.26555/konvergensi.v6i2.19548.




DOI: http://dx.doi.org/10.24014/ijaidm.v7i1.28851

Refbacks

  • There are currently no refbacks.


Office and Secretariat:

Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau

Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942

Click Here for Information


Journal Indexing:

Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti  | SINTA | Dimensions | ICI Index Copernicus 

IJAIDM Stats