ADDITIONAL MENU
Early Prediction of Stroke Disease Diagnosis Patients Using Data Mining Algorithm Comparison
Abstract
Stroke constitutes a medical emergency of paramount significance, characterized by a notably elevated mortality rate, and stands as the foremost cause of mortality within hospital settings. The dataset employed for this analysis is sourced from Kaggle, denoted as the Brain Stroke Dataset, encompassing a total of 4981 records. This research aims to carry out early prediction of stroke sufferers using several algorithms including the ANN algorithm, CART, KNN, and the NBC algorithm. The results obtained in the ANN algorithm obtained an accuracy of 93.53%, in the CART algorithm of 95.02%, in the KNN algorithm of 91.09% and in the NBC algorithm of 88.44%. With the outcomes of this research, the use of the cart set of rules may be used for early evaluation of stroke sufferers because it has a good degree of accuracy and is listed inside the excellent type kind
Keywords
Early Prediction; Stroke; Diagnosis; Comparison Algorithm
Full Text:
PDFReferences
A. Byna and M. Basit, “Penerapan Metode Adaboost Untuk Mengoptimasi Prediksi Penyakit Stroke Dengan Algoritma Naïve Bayes,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 9, no. 3, pp. 407–411, 2020.
Y. Azhar, A. K. Firdausy, and P. J. Amelia, “Perbandingan Algoritma Klasifikasi Data Mining Untuk Prediksi Penyakit Stroke,” SINTECH (Science Inf. Technol. J., vol. 5, no. 2, pp. 191–197, 2022.
Y. S. Huang et al., “Exploring the pivotal variables of tongue diagnosis between patients with acute ischemic stroke and health participants,” J. Tradit. Complement. Med., vol. 12, no. 5, pp. 505–510, 2022.
P. Kunwar and P. Choudhary, “A stacked ensemble model for automatic stroke prediction using only raw electrocardiogram,” Intell. Syst. with Appl., vol. 17, no. December 2022, p. 200165, 2023.
WHO, Noncommunicable Diseases Progress Monitor. Switzerland, 2020.
S. Tan et al., “Delays in the diagnosis of ischaemic stroke presenting with persistent reduced level of consciousness : A systematic review,” J. Clin. Neurosci., vol. 115, no. March, pp. 14–19, 2023.
W. H. Organization, Noncommunicable Diseases Country Profiles. Switzerland, 2018.
Kementerian Kesehatan Republik Indonesia, Profil Kesehatan Indonesia. Jakarta: Kementerian Kesehatan RI, 2018.
R.T. Pinzon, Awas Stroke. Yogyakarta: Betha Grafika, 2016.
M. Bahrudin, P. Yudha Pratama Putra, and D. Amalia Eka Putri, “Comparison of accuracy, sensitivity and specifity of Bahrudin score vs Siriraj score vs Gajah Mada algorithm in diagnosing type of stroke,” Brain Hemorrhages, vol. 3, no. 4, pp. 184–188, 2022.
D. Cahyanti, A. Rahmayani, and S. A. Husniar, “Analisis performa metode KNN pada Dataset pasien pengidap Kanker Payudara,” Indones. J. Data Sci., vol. 1, no. 2, pp. 39–43, 2020.
Suryani et al., “Analisis Perbandingan Algoritma C4. 5 dan CART Untuk Klasifikasi Penyakit Stroke: Comparative Analysis of C4. 5 and CART Algorithms for Classification of Stroke,” SENTIMAS Semin. Nas. Penelit. dan Pengabdi. Masy., vol. 1, no. 1, pp. 197–206, 2022.
D. Derisma, “Perbandingan Kinerja Algoritma untuk Prediksi Penyakit Jantung dengan Teknik Data Mining,” J. Appl. Informatics Comput., vol. 4, no. 1, pp. 84–88, 2020.
R. S. Rohman, R. A. Saputra, and D. A. Firmansaha, “Komparasi algoritma c4.5 berbasis pso dan ga untuk diagnosa penyakit stroke,” vol. 5, no. 1, pp. 155–161, 2020.
J. S. Tech, “Brain Stroke Dataset,” Agustus 2022, 2022. [Online]. Available: https://www.kaggle.com/datasets/jillanisofttech/brain-stroke-dataset. [Accessed: 01-Jan-2023].
F. Gorunescu, Data mining Concepts, Models and Techniques. Verlen Berlin: Springer, 2011.
P. Subarkah, M. M. Abdallah, and S. O. N. Hidayah, “Komparasi Akurasi Algoritme CART Dan Neural Network Untuk Diagnosis Penyakit Diabetes Retinopathy,” CogITo Smart J., vol. 7, no. 1, p. 121, 2021.
DOI: http://dx.doi.org/10.24014/ijaidm.v7i1.25955
Refbacks
- There are currently no refbacks.
Office and Secretariat:
Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau
Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942
Journal Indexing:
Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti | SINTA | Dimensions | ICI Index Copernicus
IJAIDM Stats