ADDITIONAL MENU
Forecasting Oil Production of Well 159-F-14H in the Volve Field Using Machine Learning Model
Abstract
Petroleum engineers require information about the production performance of a well in order to know when the well is no longer feasible to produce. By using the approachment technique of machine learning, the research was conducted using a tree-based regression model, Random Forest Regressor, Extra Trees Regressor, and Gradient Boosting Regressor. This research was done by predicting the production of an existing well in the Volve field, namely well 159-F-14H using its field data; average downhole pressure, average downhole temperature, average wellhead temperature, average wellhead pressure, on-stream hours, average choke size percentage, gas volume from well, water volume from well. The data used is 1093 days and 70% is used for training and as much as 30% for testing. A comparative study was carried out on the predictive performance of the three models. Random Forest shows the best testing result as well as RMSE 5.134 and R2 0.974, followed by Gradient Boosting shows RMSE 5.927 and R2 0.965, and Extra Trees shows RMSE 6.524 and R2 0,958.
Keywords
Artificial Intelligence; Forecasting; Machine Learning; Production; Regression
Full Text:
PDFReferences
Dariato, E. (2022). Analisa dan Perancangan Machine Learning Untuk Mendeteksi Kegagalan Job di Apache Spark. Arcitech: Journal of Computer Science and Artificial Intelligence, 2(1), 1. https://doi.org/10.29240/arcitech.v2i1.4124
Difitria, R., & Cholissodin, I. (2020). Penerapan Support Vector Regression dan Particle Swarm Optimization untuk Prediksi Jumlah Kunjungan Wisatawan Mancanegara ke Daerah Istimewa Yogyakarta. 4(5), 1364–1371. http://j-ptiik.ub.ac.id
Homepage, J., Roihan, A., Abas Sunarya, P., & Rafika, A. S. (2019). IJCIT (Indonesian Journal on Computer and Information Technology) Pemanfaatan Machine Learning dalam Berbagai Bidang: Review paper. In IJCIT (Indonesian Journal on Computer and Information Technology) (Vol. 5, Issue 1).
JARINGAN SARAF TIRUAN Studi Kasus, P., DAS Siak Hulu, S., & Suprayogi, I. (n.d.). MODEL PREDIKSI LIKU KALIBRASI MENGGUNAKAN. http://ce.unri.ac.id
Mitchell, T. M. (Tom M. (n.d.). Machine Learning.
Mostafa, S. M., & Amano, H. (2019). Effect of clustering data in improving machine learning model accuracy. Journal of Theoretical and Applied Information Technology, 97(21), 2973–2981.
Ng, C. S. W., Jahanbani Ghahfarokhi, A., & Nait Amar, M. (2022). Well production forecast in Volve field: Application of rigorous machine learning techniques and metaheuristic algorithm. Journal of Petroleum Science and Engineering, 208(PB), 109468. https://doi.org/10.1016/j.petrol.2021.109468
Nurani, A. T., Setiawan, A., Susanto, B., Salatiga, D., & Tengah, J. (2023). Perbandingan Kinerja Regresi Decision Tre e dan Regresi Linear Berganda untuk Prediksi BMI pada Dataset Asthma. 6(1), 34–43.
Putra, B. P., & Kiono, B. F. T. (2021). Mengenal Enhanced Oil Recovery (EOR) Sebagai Solusi Meningkatkan Produksi Minyak Indonesia. Jurnal Energi Baru Dan Terbarukan, 2(2), 84–100. https://doi.org/10.14710/jebt.2021.11152
Somvanshi, M., & Chavan, P. (n.d.). A Review of Machine Learning Techniques using Decision Tree and Support Vector Machine.
Vedapradha, R., Hariharan, R., & Shivakami, R. (2019). Artificial Intelligence: A Technological Prototype in Recruitment. Journal of Service Science and Management, 12(03), 382–390. https://doi.org/10.4236/jssm.2019.123026
Yunita, L. (2019). Penentuan Kehilangan Tekanan dari Wellhead menuju Separator dengan Bantuan Simulator pada Sumur Panas Bumi. ReTII, 2019(November), 496–502. https://journal.itny.ac.id/index.php/ReTII/article/view/1523%0Ahttps://journal.itny.ac.id/index.php/ReTII/article/view/1523/943
Zebua, Y. A., Sitompul, D. R. H., Sinurat, S. H., Situmorang, A., Ruben, R., Ziegel, D. J., & Indra, E. (2022). Prediksi Penetapan Tarif Penerbangan Menggunakan Auto-Ml Dengan Algoritma Random Forest. Jurnal Teknik Informasi Dan Komputer (Tekinkom), 5(1), 115. https://doi.org/10.37600/tekinkom.v5i1.508
DOI: http://dx.doi.org/10.24014/ijaidm.v7i1.24907
Refbacks
- There are currently no refbacks.
Office and Secretariat:
Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau
Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942
Journal Indexing:
Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti | SINTA | Dimensions | ICI Index Copernicus
IJAIDM Stats