Sentiment Analysis Motorku X Using Applications Naive Bayes Classifier Method

Akhmad Mustolih, Primandani Arsi, Pungkas Subarkah

Abstract


The rapid development of technology has brought convenience to humans in their daily lives. The continuously evolving technology generates large amounts of data. Data can provide valuable information if processed effectively. The Motorku X application is one of the innovations created by Astra Motor to facilitate consumers or potential customers in servicing and purchasing motorcycles. The Motorku X application generates review data every day. These review data can be utilized for future application development. To make the most of the reviews, sentiment analysis is one of the techniques used to process the review data. Sentiment analysis is a method to measure consumer sentiments in terms of positive or negative reviews. The algorithm used in this research is the Naïve Bayes classifier. One of the advantages of Naïve Bayes is its ability to work quickly and efficiently in terms of computational time. The research consists of several stages: data collection, data labeling, pre-processing, data splitting, tf-idf weighting, implementation of Naïve Bayes classifier, and evaluation of the results. The data comprises 1000 reviews divided into two classes: positive class (number) and negative class (number). The research was conducted with three scenarios of training and testing data sharing: 90%:10%, 80%:20%, and 70%:30%. The best results were achieved with the 90%:10% ratio, with an accuracy of 76%, precision of 76%, and recall of 97%.

Keywords


Analysis Sentiment; Naive Bayes Classifier; Motorku X; Data Mining

Full Text:

PDF

References


N. C. Agustina, D. Herlina Citra, W. Purnama, C. Nisa, and A. Rozi Kurnia, “MALCOM: Indonesian Journal of Machine Learning and Computer Science The Implementation of Naïve Bayes Algorithm for Sentiment Analysis of Shopee Reviews on Google Play Store Implementasi Algoritma Naive Bayes untuk Analisis Sentimen Ulasan Shopee pada Goo,” vol. 2, no. April, pp. 47–54, 2022.

N. Herlinawati, Y. Yuliani, S. Faizah, W. Gata, and S. Samudi, “Analisis Sentimen Zoom Cloud Meetings di Play Store Menggunakan Naïve Bayes dan Support Vector Machine,” CESS (Journal Comput. Eng. Syst. Sci., vol. 5, no. 2, p. 293, 2020, doi: 10.24114/cess.v5i2.18186.

I. Nilasari, “Aplikasi Motorku X Platform Beli Motor Lebih Mudah, Ini Fiturnya,” HarapanRakyat.com, 2022. https://www.harapanrakyat.com/2022/07/aplikasi-motorku-x/#:~:text=Aplikasi Motorku X merupakan aplikasi,mendapatkan berbagai kemudahan dalam bertransaksi.

A. I. Tanggraeni and M. N. N. Sitokdana, “Analisis Sentimen Aplikasi E-Government pada Google Play Menggunakan Algoritma Naïve Bayes,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 9, no. 2, pp. 785–795, 2022, doi: 10.35957/jatisi.v9i2.1835.

T. Rusli, “Jumlah Pengguna Aplikasi MotorkuX,” Palpres.com, 2022. https://palpres.disway.id/read/605785/jumlah-pengguna-aplikasi-motorkux-capai-350-ribu.

J. Effendi and M. Jorgi Ramadhan, “Analisa Cluster Aplikasi pada Google Play Store dengan Menggunakan Metode K-Means,” Pros. Annu. Res. Semin. 2018, vol. 4, no. 1, pp. 103–106, 2018, [Online]. Available: http://seminar.ilkom.unsri.ac.id/index.php/ars/article/view/1982.

S. Nayak and Y. Kumar, “A modified Bayesian boosting algorithm with weight-guided optimal feature selection for sentiment analysis,” Decis. Anal. J., vol. 8, no. March, p. 100289, 2023, doi: 10.1016/j.dajour.2023.100289.

N. Kewsuwun and S. Kajornkasirat, “A sentiment analysis model of agritech startup on Facebook comments using naive Bayes classifier,” Int. J. Electr. Comput. Eng., vol. 12, no. 3, pp. 2829–2838, 2022, doi: 10.11591/ijece.v12i3.pp2829-2838.

S. Masturoh, Achmad, and B. Pohan, “Sentiment Analysis Against the Dana E-Wallet on Google Play Reviews Using the K-Nearest Neighbor Algorithm,” J. PILAR Nusa Mandiri, vol. 17, no. 1, pp. 53–57, 2021, [Online]. Available: www.bsi.ac.id.

P. Arsi, B. A. Kusuma, and A. Nurhakim, “Analisis Sentimen Pindah Ibu Kota Berbasis Naive Bayes Classifier,” J. Inform. Upgris, vol. 7, no. 1, pp. 1–6, 2021, doi: 10.26877/jiu.v7i1.7636.

P. Subarkah, W. R. Damayanti, and R. A. Permana, “Comparison of Correlated Algorithm Accuracy Naive Bayes Classifier and Naive Bayes Classifier for Classification of heart failure,” Ilk. J. Ilm., vol. 14, no. 2, pp. 120–125, 2022, doi: 10.33096/ilkom.v14i2.1148.120-125.

B. J. Katiandhago, A. Mustolih, W. D. Susanto, P. Subarkah, and C. I. Satrio Nugroho, “Sentiment Analysis of Twitter Cases of Riots at Kanjuruhan Stadium Using the Naive Bayes Method,” J. Comput. Networks, Archit. High Perform. Comput., vol. 5, no. 1, pp. 302–312, 2023, doi: 10.47709/cnahpc.v5i1.2196.

E. D. Sri Mulyani, D. Rohpandi, and F. A. Rahman, “Analysis of Twitter Sentiment Using the Classification of Naive Bayes Method about Television in Indonesia,” 2019 1st Int. Conf. Cybern. Intell. Syst. ICORIS 2019, vol. 1, no. August, pp. 89–93, 2019, doi: 10.1109/ICORIS.2019.8874896.

Mochammad Haldi Widianto, “Algoritma Naive Bayes,” Binus University, 2019. https://binus.ac.id/bandung/2019/12/algoritma-naive-bayes/.

C. F. Hasri and D. Alita, “Penerapan Metode Naïve Bayes Classifier Dan Support Vector Machine Pada Analisis Sentimen Terhadap Dampak Virus Corona Di Twitter,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 3, no. 2, pp. 145–160, 2022, [Online]. Available: http://jim.teknokrat.ac.id/index.php/informatika.

T. Kudo, T. Yamamoto, and T. Watanabe, “Three-Step Master Data Creation Method from Big Data: Scraping, Semi-Structuring, and Extraction,” Procedia Comput. Sci., vol. 207, no. Kes, pp. 360–369, 2022, doi: 10.1016/j.procs.2022.09.070.

R. Kusumaningrum, I. Z. Nisa, R. Jayanto, R. P. Nawangsari, and A. Wibowo, “Deep learning-based application for multilevel sentiment analysis of Indonesian hotel reviews,” Heliyon, vol. 9, no. 6, p. e17147, 2023, doi: 10.1016/j.heliyon.2023.e17147.

Raksaka Indra Alhaqq, I Made Kurniawan Putra, and Yova Ruldeviyani, “Analisis Sentimen terhadap Penggunaan Aplikasi MySAPK BKN di Google Play Store,” J. Nas. Tek. Elektro dan Teknol. Inf., vol. 11, no. 2, pp. 105–113, 2022, doi: 10.22146/jnteti.v11i2.3528.

F. Hadaina and U. Budiyanto, “Implementasi Metode Multinomial Naïve Bayes Untuk Sentiment Analysis Terhadap Data Ulasan Produk Colearn Pada Google Play Store Implementation Of Multinomial Naive Bayes Method For Sentiment Analysis Of Colearn Product Review Data On Google Play Store,” Semin. Nas. Mhs. Fak. Teknol. Inf. Jakarta-Indonesia, no. September, pp. 660–666, 2022, [Online]. Available: https://senafti.budiluhur.ac.id/index.php.

D. P. Santoso and W. Wibowo, “Analisis Sentimen Ulasan Aplikasi Buzzbreak Menggunakan Metode Naïve Bayes Classifier pada Situs Google Play Store,” J. Sains dan Seni ITS, vol. 11, no. 2, 2022, doi: 10.12962/j23373520.v11i2.72534.

J. A. Septian, T. M. Fachrudin, and A. Nugroho, “Analisis Sentimen Pengguna Twitter Terhadap Polemik Persepakbolaan Indonesia Menggunakan Pembobotan TF-IDF dan K-Nearest Neighbor,” J. Intell. Syst. Comput., vol. 1, no. 1, pp. 43–49, 2019, doi: 10.52985/insyst.v1i1.36.

A. Mee, E. Homapour, F. Chiclana, and O. Engel, “Sentiment analysis using TF–IDF weighting of UK MPs’ tweets on Brexit[Formula presented],” Knowledge-Based Syst., vol. 228, p. 107238, 2021, doi: 10.1016/j.knosys.2021.107238.

K. Anam, Evaluasi Model ROC dan AUV. 2022.




DOI: http://dx.doi.org/10.24014/ijaidm.v6i2.24864

Refbacks

  • There are currently no refbacks.


Office and Secretariat:

Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau

Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942

Click Here for Information


Journal Indexing:

Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti  | SINTA | Dimensions | ICI Index Copernicus 

IJAIDM Stats