Image Classification of Beef and Pork Using Convolutional Neural Network Architecture EfficienNet-B1

Isnan Mellian Ramadhan, Jasril - Jasril, Suwanto Sanjaya, Febi Yanto, Fadhilah Syafria

Abstract


The increasing demand for beef has made many meat traders mix beef with pork to get more profit. Mixing beef and pork is harmful, especially for Muslims. In this study, the EfficientNet-B1 Convolutional Neural Network (CNN) approach was used to classify beef and pork. Experiments were conducted to compare accuracy using original data (without data augmentation) and with data augmentation. The data augmentation techniques used are rotation and horizontal flip. The total dataset after the data augmentation process is 3000 images. Many different settings were tested, including learning rates (0.00001, 0.0001, 0.001, 0.01, 0.1), batch size (32, 64), and optimizer (Adam, Adamax). After testing the Confusion Matrix, the highest accuracy results were obtained using data augmentation with a batch size of 32 of 98%. Meanwhile, those without data augmentation were 96%

Keywords


Convolutional Neural Network, Classification Beef and Pork, EfficienNet-B1, Data Augmentation, Learning Rates, Batch size, Optimizer (Adam, Adamax)

Full Text:

PDF

References


C. A. Putri, “RI Impor 22.816 Ton Daging di Maret 2022, Naik Hampir 200%,” cnbcindonesia, 2022. https://www.cnbcindonesia.com/news/20220420122605-4-333163/ri-impor-22816-ton-daging-di-maret-2022-naik-hampir-200#:~:text=Sebagai%20gambaran%2C%20Kementerian%20Pertanian%20mengumumkan, 2021%20yang%20 sebesar%20284.277%20 ton. (accessed Dec. 20, 2022).

Nida L, Pisestyani H, Basri C, Studi Kasus: Pemalsuan Daging Sapi Dengan Daging Babi Hutan Di Kota Bogor, Jurnal Kajian Veteriner 2020, 8 (2), 121-130.

Farid M & Basri H, The Effects of Haram Food on Human Emotional and Spiritual Intelligence Levels, Indonesian Journal of Halal Research 2020, 2(1), 21-26.

Gomez-Puerta LA, Garcia HH, Gonzalez AE, Peru CWG, Experimental Porcine Cysticercosis Using Infected Beetles with Taenia solium Eggs 2018, Acta Tropica. 183: 92–94

Saurabh, K & Ranjan, Shilpi. Fasciolopsiasis in Children: Clinical, Sociodemographic Profile and Outcome, Indian Journal of Medical Microbiology 2017, 35(4), 551-554

Anggara EF, Widodo TW, Lelono D., Deteksi Daging Sapi Menggunakan Electronic Nose Berbasis Bidirectional Associative Memory 2017, IJEIS, 7(2), 209-218

Handayani L, Jasril, Budianita E, Winda O., Rizki H, Denanda F, Rado Y & Ahmad F. Comparison of target Probabilistic Neural Network (PNN) Classification For Beef And Pork. Journal of Theoretical & Applied Information Technology 2017, 95(12).

Jasril, & Sanjaya, S. Learning Vector Quantization 3 (LVQ3) and Spatial Fuzzy C-Means (SFCM) for Beef and Pork Image Classification. Indonesian Journal of Artificial Intelligence and Data Mining 2018, 1(2), 60–65

Ningsih L, Buono A, Mushthofa, Haryanto T, Fuzzy Learning Vector Quantization for Classification of Mixed Meat Image Based on Character of Color and Texture 2022, Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) , 6(3), 421-429

R A Asmara, R Romario , K S Batubulan , E Rohadi, I Siradjuddin , F Ronilaya , R Ariyanto , C Rahmad and F Rahutomo, Classification Of Pork And Beef Meat Images Using Extraction Of Color And Texture Feature By Grey Level Co-Occurrence Matrix Method 2018, IOP Conf. Series: Materials Science and Engineering 434

Dakhs C, Emeka A, Jacob G, Stephanie A.B, Simran A, Ravi M, Neil G, Sebastian K, Keigo Ki, Victor M-A, Amit R. P , Comparison Of Machine Learning And Deep Learning For View Identification From Cardiac Magnetic Resonance Images, Clinical Imaging 2022, Volume 82, 121-126

Sergey M Plis, Devon R.H, Salakhutdinov R, Allen E.A, Bockholt H.J, Long J.D, Johnson H.J, Paulsen J.S, Turner Jessica A, Calhoun V. D, Deep learning for neuroimaging: a validation study, Front Neurosci 2014, 8:229.

Han X, Zhong Y, He L, Philip S Yu, Zhang L. The unsupervised hierarchical convolutional sparse auto-encoder for neuroimaging data classification. In: International conference on brain informatics and health.

Springer 2015. p. 156–66.

M. Swathy and K. Saruladha, A comparative study of classification and prediction of Cardio-Vascular Diseases (CVD) using Machine earning and Deep Learning techniques 2022, ICT Express, 8(1), 109-116.

Made, B. V. P, I, P. A. B, and Dewa. M. S. A, Klasifikasi Citra Daging Menggunakan Deep Learning dengan Optimisasi Hard Voting 2021 Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), vol. 5, no. 4, pp. 656–662.

Sarah. L, Jasril J, Suwanto S, F. Yanto, and M. Affandes, Pengaruh Hyperparameter Convolutional Neural Network Arsitektur ResNet-50 Pada Klasifikasi Citra Daging Sapi dan Daging Babi. Jurnal Nasional Komputasi dan Teknologi Informasi 2022, vol. 5, no. 3, pp. 474–481.

Amalia. H. A, Jasril, J, Sanjaya, S. Fadhillah S, & Elvia B. Implementasi Convolutional Neural Network Untuk Klasifikasi Daging Menggunakan Fitur Ekstraksi Tekstur dan Arsitektur AlexNet 2022, JURIKOM (Jurnal Riset Komputer) vol. 9, no. 3, pp. 635–643.

Alhafis, G. Y, Jasril, J, Sanjaya, S. Fadhillah S, & Elvia B. Klasifikasi Citra Daging Sapi dan Daging Babi Menggunakan Ekstraksi Ciri dan Convolutional Neural Network 2022, JURIKOM (Jurnal Riset Komputer) vol. 9, no. 3, pp. 653–660.

Yao, W, Cuiyan, B, Xiapeng. Q, Wanting, L, Chen, Z, and Leijiao, G, A DC Series Arc Fault Detection Method Based on a Lightweight Convolutional Neural Network Used in Photovoltaic System 2022, Energies (Basel), vol. 15, no. 8, p. 2877.

Amirreza, M., Gerald, S., Rupert, E., & Isabella, E. Pollen grain microscopic image classification using an ensemble of fine-tuned deep convolutional neural networks 2021. In Pattern Recognition. ICPR International Workshops and Challenges: Virtual Event, 2021, Proceedings, Part I (pp. 344-356).

Wahyu, R. P, Rita, M, and Nor, K. C. P, Deep Learning untuk Klasifikasi Glaukoma dengan menggunakan Arsitektur EfficientNet 2022. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, vol. 10, no. 2, p. 322.

Rajasekhar, C., Vinayakumar R., & Tuan, D, P. Image-based malware representation approach with EfficientNet convolutional neural networks for effective malware classification 2022. Journal of Information Security and Applications, 69, 103306.

Momot, A, Galagan, R, and Zaboluieva, M, Automation of ultrasound breast cancer images classification using deep neural networks 2022. Sciences of Europe, no. 96, pp. 38–41.

Alexander, R, Bag of Tricks for Training Brain-Like Deep Neural Networks 2022, in Brain-Score Workshop.

Fadil, A., Şebnem, B. O. R. A., & Aybars, U. G. U. R. Weeds Detection using Deep Learning Methods and Dataset Balancing 2022. International Journal of Multidisciplinary Studies and Innovative Technologies, 6(1), 19-22.

Florian, T., Oliver, T., Markus, J., Hendrik, D., & Maier, A. 2022. Detection of large vessel occlusions using deep learning by deforming vessel tree segmentations 2022. In Bildverarbeitung für die Medizin 2022: Proceedings, German Workshop on Medical Image Computing, Heidelberg, pp. 44-49.

Ejaz, K., Muhammad, Z. U. R., Fawad, A., Faisal, A, A., Nouf, M., & Jawad, A. (2022). Chest X-ray classification for the detection of COVID-19 using deep learning techniques. Sensors, 22(3), 1211.




DOI: http://dx.doi.org/10.24014/ijaidm.v6i1.21843

Refbacks

  • There are currently no refbacks.


Office and Secretariat:

Big Data Research Centre
Puzzle Research Data Technology (Predatech)
Laboratory Building 1st Floor of Faculty of Science and Technology
UIN Sultan Syarif Kasim Riau

Jl. HR. Soebrantas KM. 18.5 No. 155 Pekanbaru Riau – 28293
Website: http://predatech.uin-suska.ac.id/ijaidm
Email: ijaidm@uin-suska.ac.id
e-Journal: http://ejournal.uin-suska.ac.id/index.php/ijaidm
Phone: 085275359942

Click Here for Information


Journal Indexing:

Google Scholar | ROAD | PKP Index | BASE | ESJI | General Impact Factor | Garuda | Moraref | One Search | Cite Factor | Crossref | WorldCat | Neliti  | SINTA | Dimensions | ICI Index Copernicus 

IJAIDM Stats